这题和3358一模一样,建模形式直接不用变,就两点不一样,一是len变化了,加入y后再更新即可,还有就是可能会出现x0=x1的情况,即一条开线段垂直x轴,如果我们依旧按照上一题的建图方法,就会出现负权环,无法跑出答案,我们就可以把一个点拆成入点和出点,这样无论是否是不是垂直都可以一样建,注意开long long,不开long long可能只有9分

#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) ((x)&(-x))
#define sqr(x) ((x)*(x))
typedef long long LL; const int maxm = 1e5+;
const LL INF = 0x3f3f3f3f3f3f3f3f; struct edge{
LL u, v, cap, flow, cost, nex;
} edges[maxm]; struct Points{
LL l, r, len;
} point[]; LL head[maxm], cur[maxm], cnt, fa[<<], n, d[<<], allx[];
bool inq[<<]; void init() {
memset(head, -, sizeof(head));
} void add(int u, int v, LL cap, LL cost) {
edges[cnt] = edge{u, v, cap, , cost, head[u]};
head[u] = cnt++;
} void addedge(int u, int v, LL cap, LL cost) {
add(u, v, cap, cost), add(v, u, , -cost);
} bool spfa(int s, int t, int &flow, LL &cost) {
for(int i = ; i <= n+; ++i) d[i] = INF; //init()
memset(inq, false, sizeof(inq));
d[s] = , inq[s] = true;
fa[s] = -, cur[s] = INF;
queue<int> q;
q.push(s);
while(!q.empty()) {
int u = q.front();
q.pop();
inq[u] = false;
for(int i = head[u]; i != -; i = edges[i].nex) {
edge& now = edges[i];
int v = now.v;
if(now.cap > now.flow && d[v] > d[u] + now.cost) {
d[v] = d[u] + now.cost;
fa[v] = i;
cur[v] = min(cur[u], now.cap - now.flow);
if(!inq[v]) {q.push(v); inq[v] = true;}
}
}
}
if(d[t] == INF) return false;
flow += cur[t];
cost += 1LL*d[t]*cur[t];
for(int u = t; u != s; u = edges[fa[u]].u) {
edges[fa[u]].flow += cur[t];
edges[fa[u]^].flow -= cur[t];
}
return true;
} int MincostMaxflow(int s, int t, LL &cost) {
cost = ;
int flow = ;
while(spfa(s, t, flow, cost));
return flow;
} void run_case() {
init();
LL l, r, y1, y2;
int k, xcnt = ;
cin >> n >> k;
for(int i = ; i <= n; ++i) {
cin >> l >> y1 >> r >> y2;
LL tmp = 1LL*floor(sqrt(sqr(r-l)+sqr(y2-y1)));
if(l > r) swap(l, r);
l <<= , r <<= ;
if(l == r) r|=; else l|=;
allx[++xcnt] = l, allx[++xcnt] = r, point[i] = Points{l, r, tmp};
}
sort(allx+,allx++xcnt);
int len = unique(allx+,allx++xcnt)-allx;
for(int i = ; i <= n; ++i) {
point[i].l = lower_bound(allx+,allx+len,point[i].l)-allx;
point[i].r = lower_bound(allx+,allx+len,point[i].r)-allx;
}
for(int i = ; i < len-; ++i)
addedge(i, i+, INF, );
int s = , t = len;
for(int i = ; i <= n; ++i) {
addedge(point[i].l, point[i].r, , -point[i].len);
}
addedge(s, , k, ), addedge(len-, t, k, );
LL cost = ;
n = len;
MincostMaxflow(s, t, cost);
cout << -cost;
} int main() {
ios::sync_with_stdio(false), cin.tie();
run_case();
cout.flush();
return ;
}

luogu P3357 最长k可重线段集问题的更多相关文章

  1. P3357 最长k可重线段集问题 网络流

    P3357 最长k可重线段集问题 题目描述 给定平面 x-O-yx−O−y 上 nn 个开线段组成的集合 II,和一个正整数 kk .试设计一个算法,从开线段集合 II 中选取出开线段集合 S\sub ...

  2. 洛谷P3357 最长k可重线段集问题(费用流)

    传送门 其实和最长k可重区间集问题差不多诶…… 把这条开线段给压成x轴上的一条线段,然后按上面说的那种方法做即可 然而有一个坑点是线段可以垂直于x轴,然后一压变成一个点,连上正权环,求最长路……然后s ...

  3. 洛谷P3357 最长k可重线段集问题(费用流)

    题目描述 给定平面 x-O-yx−O−y 上 nn 个开线段组成的集合 II ,和一个正整数 kk .试设计一个算法,从开线段集合 II 中选取出开线段集合 S\subseteq IS⊆I ,使得在  ...

  4. 洛谷 P3357 最长k可重线段集问题【最大流】

    pre:http://www.cnblogs.com/lokiii/p/8435499.html 和最长k可重区间集问题差不多,也就是价值的计算方法不一样,但是注意这里可能会有x0==x1的情况也就是 ...

  5. 网络流24题-最长k可重线段集问题

    最长k可重线段集问题 时空限制1000ms / 128MB 题目描述 给定平面 x−O−y 上 n 个开线段组成的集合 I,和一个正整数 k .试设计一个算法,从开线段集合 I 中选取出开线段集合 S ...

  6. 【网络流24题】最长k可重线段集(费用流)

    [网络流24题]最长k可重线段集(费用流) 题面 Cogs的数据有问题 Loj 洛谷 题解 这道题和最长k可重区间集没有区别 只不过费用额外计算一下 但是,还是有一点要注意的地方 这里可以是一条垂直的 ...

  7. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  8. [网络流24题]最长k可重线段集[题解]

    最长 \(k\) 可重线段集 题目大意 给定平面 \(x-O-y\) 上 \(n\) 个开线段组成的集合 \(I\) ,和一个正整数 \(k\) .试设计一个算法,从开线段集合 \(I\) 中选取开线 ...

  9. (luogu P3358)最长k可重区间集问题 [TPLY]

    最长k可重区间集问题 题目链接 https://www.luogu.org/problemnew/show/3358 做法 所有点向下一个点连容量为k费用为0的边 l和r连容量为1费用为区间长度的边 ...

随机推荐

  1. 【快学SpringBoot】快速上手好用方便的Spring Cache缓存框架

    前言 缓存,在开发中是非常常用的.在高并发系统中,如果没有缓存,纯靠数据库来扛,那么数据库压力会非常大,搞不好还会出现宕机的情况.本篇文章,将会带大家学习Spring Cache缓存框架. 原创声明 ...

  2. IDEA 创建 Spring Boot 多模块项目(Multi Modules)

    本准备写点代码实例放到网站,太多的模板,反而每次新建工程的时候很麻烦.于是准备把这个章节的内容提前先讲讲.正好把这个代码也管理起来.话说这个多模块功能还挺爽. 写过 C# 项目用过 Visual St ...

  3. java中关于类和对象的一些思考

    就这个问题而言 第一种和第二种定义的变量并不是一种形式 前者我们称为原始数据变量 后者我们称为对象变量 这两种变量的创建方式,定义方式,使用方式都有着很多不同 需要引起注意. 在java中,有着基本的 ...

  4. 杭电1003 最大子串(第二次AC) 当作DP的训练吧

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  5. Laravel Vuejs 实战:开发知乎 (1)项目环境配置和用户表设计

    1.使用laragon新建laravel项目 zhihu 2.配置env文件的database设置 DB_DATABASE=zhihu 3.分析users表需要的字段 4.修改数据库迁移文件: cla ...

  6. 201771010131-王之泰 实验一 软件工程准备—<通读《现代软件工程—构建之法》后所思所想>周学习总结

    项目 内容 作业所属课程 https://www.cnblogs.com/nwnu-daizh/ 作业要求 https://www.cnblogs.com/nwnu-daizh/p/12369881. ...

  7. css3 :default应用场景

    引用自 张鑫旭文章.

  8. springMVC读取本地图片显示到前端页面

    @RequestMapping("/getImage") @ResponseBody public void getImagesId(HttpServletResponse rp) ...

  9. django 模版标签笔记

    一.模板变量笔记:1.在模版中使用变量,需要将变量放到‘{{}}’中.'{{ 变量 }}'2.如果想访问对象的属性,可以通过'对象.属性名'的方式访问3.如果想要访问一个字典的key对应的value, ...

  10. linux下后台执行shell脚本nohup

    (一)使用nohup后台执行脚本 脚本执行结果记录到nohup.out文件中 (二)使用&后台执行脚本 使用&符号在后台执行命令或脚本后,如果你退出登录,这个命令就会被自动终止掉