-

论文地址:https://arxiv.org/abs/1604.01325

contribution is twofold:
(i) we leverage a ranking framework to learn convolution and projection weights that are used to build the region features;
(ii) we employ a region proposal network to learn which regions should be pooled to form the final global descriptor.
 
当前最先进的是:

the state of the art is currently held by conventional methods relying on local descriptor matching and re-ranking with elaborate spatial verfication
 
当前使用CNN被限制在:using a pre-trained network as local feature extractor
当前的难点和解决方法有有:
1)图像被压缩还要保留大部分细节;本文可以精确的表达不同大小的长宽比的图像,解决CNN缺少的几何不变的特性;
2)深度学习的图像检索性能落后于传统方法的原因是缺少特定实例检索任务的数据集,基于深度学习的图像检索一般是使用Imagenet预训练的网络提取局部特征,这些特征被用来学习不同的语义分类,但是在类内的变化却是鲁棒的,这对实例检索不利,因为we are interested in distinguishing between particular objects – even if they belong to the same semantic  category。
 
本文的解决手段:
1)建立在R-MAC(regional maximum activation of convolution)基础之上, It aggregates several image regions into a compact feature vector of fixed length and is thus robust to scale and translation(平移).这种表示可以处理不同长宽比的高分辨率图像,并获得相当好的准确性。构建R-MAC表示所涉及的所有步骤都是可区分的,因此可以以端到端的方式学习权重;
2)use a three-stream Siamese network that explicitly optimizes the weights of the R-MAC representation for the image retrieval task by using a triplet ranking loss;

3)使用Landmarks dataset,并提出清理的方法;

4)池化机制使用region proposal network而不是rigid grid。

rigid grid的问题:

First, as the grid is independent of the image content,it is unlikely that any of the grid regions accurately align with the object of interest.
Second, many of the regions only cover background.
RPN的优点:
First, the region proposals typically cover the object of interest more tightly than the rigid grid.
Second, even if they do not overlap exactly with the region of interest, most of the proposals do overlap significantly with it, which means that increasing the number of proposals per image not only helps to increase the coverage but also helps in the many-to-many matching.
Representations of different images can be then compared using the dot-product(点积)。
 
 
使用 shifting and a fully connected (FC) layer代替PCA
 

Deep Image Retrieval: Learning global representations for image search In ECCV, 2016学习笔记的更多相关文章

  1. Learning to Track at 100 FPS with Deep Regression Networks ECCV 2016 论文笔记

    Learning to Track at 100 FPS with Deep Regression Networks   ECCV 2016  论文笔记 工程网页:http://davheld.git ...

  2. 论文解读(GraRep)《GraRep: Learning Graph Representations with Global Structural Information》

    论文题目:<GraRep: Learning Graph Representations with Global Structural Information>发表时间:  CIKM论文作 ...

  3. Deep learning with Python 学习笔记(5)

    本节讲深度学习用于文本和序列 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet) 与其他所有神经网络一 ...

  4. Deep High-Resolution Representation Learning for Human Pose Estimation

    Deep High-Resolution Representation Learning for Human Pose Estimation 2019-08-30 22:05:59 Paper: CV ...

  5. Deep Learning(深度学习)学习笔记整理

    申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...

  6. Deep Learning(深度学习)学习笔记整理系列之(五)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  7. 【转载】Deep Learning(深度学习)学习笔记整理

    http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...

  8. Deep Learning(深度学习)学习笔记整理系列之(八)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  9. Deep Learning(深度学习)学习笔记整理系列之(七)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

随机推荐

  1. redis 基础 Redis 数据类型

    String(字符串) Hash(哈希) List(列表) Set(集合) zset(sorted set:有序集合)

  2. 07 DTFT

    DTFT 连续时间傅里叶变换(CTFT) 连续时间傅里叶变换的定义为: \[ X(j\Omega)=\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt \] 其 ...

  3. 质因数分解(0)<P2012_1>

    质因数分解 (prime.cpp/c/pas) [问题描述] 已知正整数n是两个不同的质数的乘积,试求出较大的那个质数. [输入] 输入文件名为prime.in. 输入只有一行,包含一个正整数n. [ ...

  4. vb.net与vb的区别

    本文链接:https://blog.csdn.net/dfshsdr/article/details/63255645最近接触了vb.net,它增加了vb的很多特性,而且演化成为完全面向对象的编程语言 ...

  5. PAT A1091 Acute Stroke

    对于坐标平面的bfs模板题~ #include<bits/stdc++.h> using namespace std; ; ][][]={false}; ][][]; int n,m,l, ...

  6. nginx的access的阶段的access模块、auth_basic模块、auth_request模块及satisfy指令介绍

    access 模块 示例从上向下匹配 location / { deny 192.168.1.1; allow 192.168.1.0/24; allow 10.1.1.0/16; allow 200 ...

  7. WAV格式解析

    WAV为微软公司(Microsoft)开发的一种声音文件格式,它符合RIFF(Resource Interchange File Format)文件规范,用于保存Windows平台的音频信息资源,被W ...

  8. Python 基础之返回值与函数使用与局部变量和全局变量locals() 和 globals()

    一.函数的返回值 return return: 自定义返回值,返回到哪里? 返回到函数的[调用处]1.return 后面可以跟上六个标准数据类型,除此之外,可以跟上 类对象,函数,如果不写return ...

  9. Hive的存储和MapReduce处理——数据清洗

    日期:2019.11.13 博客期:115 星期三 Result文件数据说明: Ip:106.39.41.166,(城市) Date:10/Nov/2016:00:01:02 +0800,(日期) D ...

  10. MySql的数据导入到Sql Server数据库中

    步骤一:安装MySql驱动 驱动下载链接:https://dev.mysql.com/downloads/connector/odbc/ 下载完成后安装, 一路Next即可 步骤二:创建DSN DSN ...