手把手numpy教程【二】——数组与切片
本文始发于个人公众号:TechFlow,原创不易,求个关注
今天是Numpy专题的第二篇,我们来进入正题,来看看Numpy的运算。
上一篇文章当中曾经提到过,同样大小的数据,使用Numpy的运算速度会是我们自己写循环来计算的上百倍甚至更多。并且Numpy的API非常简单,通常只要简单几行代码就可以完成非常复杂的操作。
计算与广播
在Python中的数组无论是什么类型,我们是无法直接对其中所有的元素进行计算的。想要做到这一点,必须要通过map这样的方式操作。而Numpy当中,我们可以很方便地对一整个数组或者是矩阵进行各式的计算。
首先,我们先定义一个Numpy的数组:
arr = np.array([[1,2,3],[2,2,3]])
首先而我们来看一下基本的四则运算:
这张图中我们可以看出两点,首先是Numpy当中的数组重载了四则运算符,我们可以直接通过加减乘除进行计算。第二点是Numpy自动替我们做了映射,虽然我们运算操作的对象是数组本身,但是Numpy自动替我们映射到了其中的每一个元素。
如果你不喜欢直接运算,想要使用Numpy的api进行调用,也是一样可以的。Numpy当中也为加减乘除提供了api。
我们甚至还可以比较两个数组的大小,得到的结果是一个bool型的数组,代表其中每一个元素的大小关系。
除了列举的这些之外,Numpy当中还提供了许多其他的api来进行各种计算,几乎囊括了所有常见的数学计算公式。比如log、exp、pow、开方、三角函数等等计算,基本上api的名称和math当中的一样,大家也没有必要都记住,基本上可以根据英文猜出来,一般来说记住常用的,其他的可以等到使用的时候再查阅。
广播
理解了Numpy中的基本操作之后,接下来要介绍一个非常重要的概念,叫做广播。如果这个概念理解不到位,那么后来在使用的过程当中,会遇到很多头疼的问题,或者是总是看不懂别人的代码。
广播的英文叫做broadcasting,这个思想应用的范围很广,比如分布式消息中间件等很多领域都有化用。在Numpy计算当中,广播指的是将一个小的数据应用在大数据的计算上。这个概念其实很形象,我们来看个例子。
比如我们想要对Numpy中的数组每一位的元素都加上3,我们当然可以创造出一个同样大小的数组来,然后再把它们相加。但是大可不必这么麻烦,我们直接用原数组加上3即可,Numpy内部会发现3和我们的数据大小不一致,然后自动帮我们把3拓充到和我们的数据一样大小的数组再进行计算:
它其实等价于:
np.full_like(arr, 3) + arr
如果你能理解了上面这个操作,那么同样的,我们要对所有的元素平方或者是开方也都不在话下了:
广播并不是只可以用在数组和一个整数之间,还可以用在数组和另外一个规模更小的数组当中,但是会对两者的shape有所要求。Numpy规定,两个数组的shape必须相等或者其中一个为1才可以执行广播操作。
比如说刚才我们创建的arry数组的shape是(3, 2),我们可以让它和一个大小是(1, 2)或者是(3, 1)的“小数组”进行运算,这同样是支持的。
如果你看不明白上面的计算过程, 我下面用一张图做一下演示。
从图中可以看到左边的数组shape是(2, 3),右边的数组shape是(2, 1),满足Numpy对于广播机制的要求。Numpy会自动对右边数组shape为1的维度进行广播,也就是将它复制若干份使得它们的shape相等。如果你把左边的数组看成是若干个听广播的人,右侧的数组看成是消息的话,那么广播机制就是把消息复制若干份,让每一个听广播的人听到同样的内容。所以这个名字还是很形象的。
切片
Python中数组为人称道的很重要的一点就是它的切片操作非常方便,Numpy作为依托于Python的计算包,自然也继承了这一点,所以在Numpy当中,我们也可以很方便地使用切片功能。切片的使用方法和Python基本是一样的。
我们用上下标加上冒号来表示我们想要切片的范围, 和Python一样,这是一个左闭右开的区间。
我们也可以省略其中的一个范围,只提供上界或者是下界:
我们还可以上下界都省略,表示全部都要,以及倒序切片的方法也和Python是一样的。
但是有一点不太一样,Numpy中的切片和golang中的切片比较像,它代表原数组一段区间的引用,而不是拷贝。也就是说我们修改切片中的内容是会影响原数组的,我们对一个切片赋值,明显可以发现原数组的对应位置发生了改变。
这么设计的原因和golang是一样的,因为Numpy是为了大数据计算而诞生的,大数据计算显然性能是一个非常重要的考量指标。如果这里不是设计成引用,而是拷贝的话,那么当一个大的切片产生的时候,必然会涉及到大量拷贝的操作。不仅非常消耗内存,并且也会占用大量计算资源。如果使用引用可以非常快速地返回结果。
golang当中如此设计,也是一样的道理。
那问题来了,如果我们想要拷贝出一份切片出来,而不是获得一个切片应该怎么办?答案也很简单,我们可以调用copy方法,获取一份拷贝。
arr[3:10].copy()
索引
理解了切片的用法之后,我们接下来看看索引。索引也是Numpy当中非常重要的概念,应用也非常普遍。
Numpy当中的索引对应数组中的维度,比如一个二维的数组,当我们用下标访问的时候,获得的其实是一个一维的数组。所以如果我们想要访问一个具体的元素的时候,能做的就是继续往下指定下标:
这个很好理解,和Python当中的多维数组的用法是一样的。上面我们用了两个方括号去锁定一个元素的位置,为了写起来方便,我们还可以用逗号分隔查询。友情提醒,Python原生的数组并不支持这样的操作,不要搞混哦。
同样的道理,如果是多维的数组也是一样的,我们依次写出从0到k维的坐标来获取一个固定的元素。如果我们给出的坐标信息较少,那么则会获得一个数组。
拿3维数组举例,如果我们访问的时候只用一个下标,那么我们获得的是一个二维数组。如果使用两个下标,则获得的是一个一维数组。对于更高的维度也是同样。
结尾
今天的文章我们一起了解了Numpy当中常见的计算api以及广播和索引机制,关于索引的使用今天只是开了个头,还有很多非常灵活的用法,由于篇幅的限制,我们分成了多篇文章,会在之后的文章当中一一介绍。
今天介绍的也是Numpy的基础内容,除了广播机制稍稍需要思考一下之外,其余的应该都非常简单,我相信大家都能看明白。Numpy之所以普及,除了速度快之外,api简单易用,学习成本低也是很大的特点。
关注我,获取更多精彩文章。
手把手numpy教程【二】——数组与切片的更多相关文章
- Golang教程:数组和切片
数组 数组是类型相同的元素的集合.例如,整数 5, 8, 9, 79, 76 的集合就构成了一个数组.Go不允许在数组中混合使用不同类型的元素(比如整数和字符串). 声明 var variable_n ...
- numpy多维数组
1 多维数组的切片用法 c = np.array([[[0,1,2],[4,5,6],[8,7,5],[10,11,12]],[[6,2,3],[9,8,34],[100,101,102],[110, ...
- 手把手golang教程【二】——数组与切片
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是golang专题的第五篇,这一篇我们将会了解golang中的数组和切片的使用. 数组与切片 golang当中数组和C++中的定义类似, ...
- Numpy 笔记: 多维数组的切片(slicing)和索引(indexing)【转】
目录 切片(slicing)操作 索引(indexing) 操作 最简单的情况 获取多个元素 切片和索引的同异 切片(slicing)操作 Numpy 中多维数组的切片操作与 Python 中 lis ...
- 手把手教从零开始在GitHub上使用Hexo搭建博客教程(二)-Hexo参数设置
前言 前文手把手教从零开始在GitHub上使用Hexo搭建博客教程(一)-附GitHub注册及配置介绍了github注册.git相关设置以及hexo基本操作. 本文主要介绍一下hexo的常用参数设置. ...
- go语言基础知识笔记(二)之数组和切片
数组和切片知识用的也是比较多,的给我们工作带来很大的便利 (一) 数组 定义:在golang中数组的长度是不可变,数组存放要求是同一种数据类型 //golang中数组定义的四种方法1.先声明,后赋值 ...
- 【NumPy学习指南】day4 多维数组的切片和索引
ndarray支持在多维数组上的切片操作.为了方便起见,我们可以用一个省略号(...)来 表示遍历剩下的维度. (1) 举例来说,我们先用arange函数创建一个数组并改变其维度,使之变成一个三维数组 ...
- go语言教程之浅谈数组和切片的异同
Hello ,各位小伙伴大家好,我是小栈君,上次分享我们讲到了Go语言关于项目工程结构的管理,本期的分享我们来讲解一下关于go语言的数组和切片的概念.用法和区别. 在go语言的程序开发过程中,我们避免 ...
- 【转】numpy教程
[转载说明] 本来没有必要转载的,只是网上的版本排版不是太好,看的不舒服.所以转过来,重新排版,便于自己查看. 基础篇 NumPy的主要对象是同种元素的多维数组. 这是一个所有的元素都是一种类型.通过 ...
随机推荐
- anaconda 使用conda命令创建虚拟环境
1.首先在所在系统中安装Anaconda.可以打开命令行输入conda -V检验是否安装以及当前conda的版本. 2.conda常用的命令. 1)conda list 查看安装了哪些包. 2)con ...
- ElasticSearch的高级复杂查询:非聚合查询和聚合查询
一.非聚合复杂查询(这儿展示了非聚合复杂查询的常用流程) 查询条件QueryBuilder的构建方法 1.1 精确查询(必须完全匹配上,相当于SQL语句中的“=”) ① 单个匹配 termQuery ...
- JS流程图解决方案GoJS
GoJs简介 一个实现交互类图表(比如流程图,树图,关系图,力导图等等)的JS库 GoJS依赖于HTML5,所以请保证您的浏览器版本支持HTML5,当然还要加载这个库. 首先个人建议先下载官方实例的 ...
- 杂园日记-H5-IOS-Android混合开发
1.js 调用 原生API iOS: window.webkit.messageHandlers.yourFunName.postMessage({"1":"3" ...
- sql注入原理+mysql相关知识点
什么是SQL注入 sql就是经常说的数据库,而sql注入就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令.SQL注入是比较常见的网络攻击 ...
- CG-CTF(5)
CG-CTF https://cgctf.nuptsast.com/challenges#Web 续上~ 第二十二题:SQL注入1 点击Source: 分析: mysql_select_db()函数: ...
- 显示 QStringList 的内容
QStringList s; s << "your" << "string" << "list"; ; ...
- [Hands-on-Machine-Learning-master] 02 Housing
用到的函数 numpy.random.permutation随机排列一个序列,返回一个排列的序列. >>> np.random.permutation(10) array([1, 7 ...
- Android | 教你如何使用HwCameraKit接入相机人像模式
目录 介绍 简介 关于本次CodeLab 你将建立什么 你会学到什么 你需要什么 申请Camera相关权限 集成HwCameraKit开放能力 步骤1 模式创建:获取CameraKit实例,创建人像模 ...
- HDU 1233 最小生成树模板题,练练模板
还是畅通工程 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...