这俩题太像了

bzoj 3450 Tyvj1952 Easy

Description

某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(

我们来简化一下这个游戏的规则

有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有aa分,comb就是极大的连续o。

比如ooxxxxooooxxx,分数就是2
2+4*4=4+16=20。

Sevenkplus闲的慌就看他打了一盘,有些地方跟运气无关要么是o要么是x,有些地方o或者x各有50%的可能性,用?号来表示。

比如oo?xx就是一个可能的输入。

那么WJMZBMR这场osu的期望得分是多少呢?

比如oo?xx的话,?是o的话就是oooxx => 9,是x的话就是ooxxx => 4

期望自然就是(4+9)/2 =6.5了

Input

第一行一个整数n,表示点击的个数

接下来一个字符串,每个字符都是ox?中的一个

Output

一行一个浮点数表示答案

\(n\leq 300000\)


一开始想对每一块连续的确定的\(o\)来维护,但显然不行

由于答案是长度的平方,所以可以先维护一个期望长度

\(len_i\)表示以\(i\)结尾的期望长度

你显然,如果当前是\(o,len_i=len_{i-1}+1\),当前为\(x,len_i=0\)

如果是不确定,又因为概率是二分之一,那期望就是上面两种情况加起来除以二,\(len_i=\dfrac{len_{i-1}+1}{2}\)

然后很容易观察到的是\((x+1)^2=x^2+2x+1\)

所以可以由这个式子从长度推到答案

设\(f_i\)为\(1\)到\(i\)位答案的期望,这里和刚才\(len\)不同

还是分三种情况讨论

已经确定的两种情况都很简单,是\(o\)就\(f_i=f_{i-1}+2len_{i-1}+1\),是\(x\)就\(f_i=f_{i-1}\)

因为这里是统计的\(1\)到\(i\)的期望答案,所以也要把前面的期望累加上

如果不确定,就是\(f_i\)有一半的几率能加上\(2len_{i-1}+1\),所以\(f_o=f_{i-1}+\dfrac{2len_{i-1}+1}{2}\)

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n;
char s[300006];
double len[300006],f[300006];//len是以i结尾的期望长度
int main(){
n=read();
std::scanf("%s",s+1);
for(reg int i=1;i<=n;i++){
if(s[i]=='o'){
len[i]=len[i-1]+1;
f[i]=len[i-1]*2+1+f[i-1];
}
else if(s[i]=='x'){
len[i]=0;f[i]=f[i-1];
}
else{
len[i]=(len[i-1]+1)/2;
f[i]=(len[i-1]*2+1)/2+f[i-1];
}
}
std::printf("%.4lf",f[n]);
return 0;
}

bzoj4318 OSU!

这个就是前面那个的升级版

Description

osu 是一款群众喜闻乐见的休闲软件。

我们可以把osu的规则简化与改编成以下的样子:

一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)

现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。

Input

第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。

Output

只有一个实数,表示答案。答案四舍五入后保留1位小数。

\(n\leq 100000\)


还是用之前的思路,维护一个长度

但是这次转移就是\(len_i=(len_{i-1}+1)\cdot p\)了,因为它有\(p\)的概率能加一,而剩下\(1-p\)的几率变成0

由于\((x+1)^3=x^3+3x^2+3x+1\),所以还要再维护一个长度平方的期望才能得到答案

因为期望的平方不一定等于平方的期望,这是看了别人blog才知道的,并不会证

长度平方的期望和刚才差不多,但并不完全一样,这只算上以\(i\)结尾的长度的平方

算答案就照搬这个式子然后乘上\(p\)就行

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n;
double f[100006],sqr[100006],len[100006];
int main(){
n=read();
reg double p;
for(reg int i=1;i<=n;i++){
std::scanf("%lf",&p);
len[i]=(len[i-1]+1)*p;
sqr[i]=(sqr[i-1]+len[i-1]*2+1)*p;
f[i]=f[i-1]+(3*sqr[i-1]+3*len[i-1]+1)*p;
}
// for(reg int i=1;i<=n;i++) std::printf("%.3lf %.3lf %.3lf\n",len[i],sqr[i],f[i]);
std::printf("%.1lf",f[n]);
return 0;
}

其实这两段代码中的数组是可以省掉的,只记录一个之前以为的信息

bzoj4318 OSU!和bzoj 3450 Tyvj1952 Easy的更多相关文章

  1. Bzoj 3450: Tyvj1952 Easy (期望)

    Bzoj 3450: Tyvj1952 Easy 这里放上题面,毕竟是个权限题(洛谷貌似有题,忘记叫什么了) Time Limit: 10 Sec Memory Limit: 128 MB Submi ...

  2. Bzoj 3450: Tyvj1952 Easy 期望/概率,动态规划

    3450: Tyvj1952 Easy Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 431  Solved: 325[Submit][Status] ...

  3. bzoj 3450 Tyvj1952 Easy (概率dp)

    3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...

  4. 【概率】BZOJ 3450:Tyvj1952 Easy

    Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...

  5. bzoj 3450: Tyvj1952 Easy

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 411  Solved: 309[Submit][Status][Discuss] Descriptio ...

  6. BZOJ 3450 Tyvj1952 Easy(期望)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3450 [题目大意] 给出一个字符串,包含o,x和?,一个字符串的得分为 每段连续的o的 ...

  7. BZOJ 3450: Tyvj1952 Easy 数学期望

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  8. BZOJ 3450: Tyvj1952 Easy [DP 概率]

    传送门 题意:$ox?$组成的序列,$?$等概率为$o\ or\ x$,得分为连续的$o$的长度的平方和,求期望得分 一开始没想出来,原因在于不知道如何记录长度 其实我们同时求得分和长度的期望就好了 ...

  9. BZOJ 3450 Tyvj1952 Easy ——期望DP

    维护$x$和$x^2$的期望递推即可 #include <map> #include <ctime> #include <cmath> #include <q ...

随机推荐

  1. Python Modules and Packages – An Introduction

    This article explores Python modules and Python packages, two mechanisms that facilitate modular pro ...

  2. Pytest系列(14)- 配置文件pytest.ini的详细使用

    如果你还想从头学起Pytest,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1690628.html 前言 pytest配置文件可以改变 ...

  3. XSS(跨站脚本攻击)简单讲解

    1.1 XSS简介 跨站脚本攻击(XSS),是最普遍的Web应用安全漏洞.这类漏洞能够使得攻击者嵌入恶意脚本代码(一般是JS代码)到正常用户会访问到的页面中,当正常用户访问该页面时,则可导致嵌入的恶意 ...

  4. python3(十七) nonameFunc

    L = list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9])) print(L) # [1, 4, 9, 16, 25, 36, 49, 64, ...

  5. pgsql中的lateral使用小结

    pgsql中的lateral 什么是LATERAL 带有LATERAL的SQL的计算步骤 LATERAL在OUTER JOIN中的使用限制(或定义限制) LATERAL的几个简单的例子 总结 举几个我 ...

  6. 一个有关 scala 编程语言 的博客

    http://www.cnblogs.com/superjt/category/312683.html

  7. 【three.js第四课】自定义材料、贴图。

    1.先去下载6张不同的图片素材放到项目中. 2.在[three.js第三课]的代码基础上添加自定义的材料 //自定义材料 cubeMaterial 数组 //map:用于加载图片,THREE.Text ...

  8. Matlab学习-(2)

    1. 文件读取 在编写一个matlab项目时候,通常要导入很多不同格式的数据,下面我们来学习不同的导入函数.(1) 保存工作区MATLAB支持工作区的保存.用户可以将工作区或工作区中的变量以文件的形式 ...

  9. CLDAPReflectionDDoS(CLDAP反射放大攻击)

    CLDAP Reflection DDoS 0x01 LDAP: 全称为Lightweight Directory Access Protocol,即轻量目录访问协议,基于X.500标准: 目录服务就 ...

  10. eclipse添加方法注释

    打开注释模板编辑窗口:Window ->Preferences->java -> Code Style -> Code Template->Comments type 设 ...