这俩题太像了

bzoj 3450 Tyvj1952 Easy

Description

某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(

我们来简化一下这个游戏的规则

有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有aa分,comb就是极大的连续o。

比如ooxxxxooooxxx,分数就是2
2+4*4=4+16=20。

Sevenkplus闲的慌就看他打了一盘,有些地方跟运气无关要么是o要么是x,有些地方o或者x各有50%的可能性,用?号来表示。

比如oo?xx就是一个可能的输入。

那么WJMZBMR这场osu的期望得分是多少呢?

比如oo?xx的话,?是o的话就是oooxx => 9,是x的话就是ooxxx => 4

期望自然就是(4+9)/2 =6.5了

Input

第一行一个整数n,表示点击的个数

接下来一个字符串,每个字符都是ox?中的一个

Output

一行一个浮点数表示答案

\(n\leq 300000\)


一开始想对每一块连续的确定的\(o\)来维护,但显然不行

由于答案是长度的平方,所以可以先维护一个期望长度

\(len_i\)表示以\(i\)结尾的期望长度

你显然,如果当前是\(o,len_i=len_{i-1}+1\),当前为\(x,len_i=0\)

如果是不确定,又因为概率是二分之一,那期望就是上面两种情况加起来除以二,\(len_i=\dfrac{len_{i-1}+1}{2}\)

然后很容易观察到的是\((x+1)^2=x^2+2x+1\)

所以可以由这个式子从长度推到答案

设\(f_i\)为\(1\)到\(i\)位答案的期望,这里和刚才\(len\)不同

还是分三种情况讨论

已经确定的两种情况都很简单,是\(o\)就\(f_i=f_{i-1}+2len_{i-1}+1\),是\(x\)就\(f_i=f_{i-1}\)

因为这里是统计的\(1\)到\(i\)的期望答案,所以也要把前面的期望累加上

如果不确定,就是\(f_i\)有一半的几率能加上\(2len_{i-1}+1\),所以\(f_o=f_{i-1}+\dfrac{2len_{i-1}+1}{2}\)

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n;
char s[300006];
double len[300006],f[300006];//len是以i结尾的期望长度
int main(){
n=read();
std::scanf("%s",s+1);
for(reg int i=1;i<=n;i++){
if(s[i]=='o'){
len[i]=len[i-1]+1;
f[i]=len[i-1]*2+1+f[i-1];
}
else if(s[i]=='x'){
len[i]=0;f[i]=f[i-1];
}
else{
len[i]=(len[i-1]+1)/2;
f[i]=(len[i-1]*2+1)/2+f[i-1];
}
}
std::printf("%.4lf",f[n]);
return 0;
}

bzoj4318 OSU!

这个就是前面那个的升级版

Description

osu 是一款群众喜闻乐见的休闲软件。

我们可以把osu的规则简化与改编成以下的样子:

一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)

现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。

Input

第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。

Output

只有一个实数,表示答案。答案四舍五入后保留1位小数。

\(n\leq 100000\)


还是用之前的思路,维护一个长度

但是这次转移就是\(len_i=(len_{i-1}+1)\cdot p\)了,因为它有\(p\)的概率能加一,而剩下\(1-p\)的几率变成0

由于\((x+1)^3=x^3+3x^2+3x+1\),所以还要再维护一个长度平方的期望才能得到答案

因为期望的平方不一定等于平方的期望,这是看了别人blog才知道的,并不会证

长度平方的期望和刚才差不多,但并不完全一样,这只算上以\(i\)结尾的长度的平方

算答案就照搬这个式子然后乘上\(p\)就行

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n;
double f[100006],sqr[100006],len[100006];
int main(){
n=read();
reg double p;
for(reg int i=1;i<=n;i++){
std::scanf("%lf",&p);
len[i]=(len[i-1]+1)*p;
sqr[i]=(sqr[i-1]+len[i-1]*2+1)*p;
f[i]=f[i-1]+(3*sqr[i-1]+3*len[i-1]+1)*p;
}
// for(reg int i=1;i<=n;i++) std::printf("%.3lf %.3lf %.3lf\n",len[i],sqr[i],f[i]);
std::printf("%.1lf",f[n]);
return 0;
}

其实这两段代码中的数组是可以省掉的,只记录一个之前以为的信息

bzoj4318 OSU!和bzoj 3450 Tyvj1952 Easy的更多相关文章

  1. Bzoj 3450: Tyvj1952 Easy (期望)

    Bzoj 3450: Tyvj1952 Easy 这里放上题面,毕竟是个权限题(洛谷貌似有题,忘记叫什么了) Time Limit: 10 Sec Memory Limit: 128 MB Submi ...

  2. Bzoj 3450: Tyvj1952 Easy 期望/概率,动态规划

    3450: Tyvj1952 Easy Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 431  Solved: 325[Submit][Status] ...

  3. bzoj 3450 Tyvj1952 Easy (概率dp)

    3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...

  4. 【概率】BZOJ 3450:Tyvj1952 Easy

    Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...

  5. bzoj 3450: Tyvj1952 Easy

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 411  Solved: 309[Submit][Status][Discuss] Descriptio ...

  6. BZOJ 3450 Tyvj1952 Easy(期望)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3450 [题目大意] 给出一个字符串,包含o,x和?,一个字符串的得分为 每段连续的o的 ...

  7. BZOJ 3450: Tyvj1952 Easy 数学期望

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  8. BZOJ 3450: Tyvj1952 Easy [DP 概率]

    传送门 题意:$ox?$组成的序列,$?$等概率为$o\ or\ x$,得分为连续的$o$的长度的平方和,求期望得分 一开始没想出来,原因在于不知道如何记录长度 其实我们同时求得分和长度的期望就好了 ...

  9. BZOJ 3450 Tyvj1952 Easy ——期望DP

    维护$x$和$x^2$的期望递推即可 #include <map> #include <ctime> #include <cmath> #include <q ...

随机推荐

  1. 路由与交换,cisco路由器配置,动态路由协议—RIP

    一.动态路由协议分类 动态路由协议包括IGP(内部网关协议)和EGP(外部网关协议). 1.IGP IGP又包括距离向量路由协议和链路状态路由协议. (1)距离向量路由协议典型代表:RIP (2)链路 ...

  2. 使用 Python 查看局域网内存活主机

    1 安装 (如果误用了 pip insatll nmap的话,要先 pip uninstall nmap) pip install python-nmap Nmap 是一款用于网络发现和安全审计的网络 ...

  3. fiddler composer post请求

    必加部分:Content-Type: application/json

  4. Linux常用命令02(远程管理)

    01 关机/重启 序号 命令 对应英文 作用 01 shutdown 选项 时间 shutdown 关机/重新启动 1.1 shutdown shutdown 命令可以 安全 关闭 或者 重新启动系统 ...

  5. 新时代前端必备神器 Snapjs之弹动效果

    有人说不会 SVG 的前端开发者不叫开发者,而叫爱好者.前端不光是 Angularjs 了,这时候再不学 SVG 就晚了!(如果你只会 jQuery 就当我没说...)这里我就给大家分享一个前几天在别 ...

  6. 转载:URL链接中的不同用处

    ,井号:表示网页中的一个位置,被称之为锚点,常用于某个网页间不同位置的跳转,简单的说就是在一个网页中,URL 不变的情况下,通过添加"#buy"的字符在 URL 最后可以跳转到当前 ...

  7. win10安装docker,VSCode管理docker

    背景 docker:随着技术的不断迭代,开发环境的配置与部署越来越重要.Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linu ...

  8. stand up meeting 12/21/2015

    part 组员                工作              工作耗时/h 明日计划 工作耗时/h    UI 冯晓云  完成PDF UI主页面的页面切换功能,待完善    4  完善 ...

  9. PHP函数:memory_get_usage

    memory_get_usage()  -返回分配给 PHP 的内存量 说明: memory_get_usage ([ bool $real_usage = false ] ) : int 参数: r ...

  10. Laravel 分页 数据丢失问题解决

    问题: to do list 中有32条数据,每页10条,共3页. 做完了一个事项之后,准备打卡,发现找不到这个事项. 数据库查询正常,有这一条数据. 原因: 发现是分页出了问题,第1页的数据和第2页 ...