Codeforces1307D. Cow and Fields
对于本题,最短路,考虑bfs,那么我们可以跑2次bfs,求出每个点到1与n的最短路,设为x_a, x_b,那我们可以把问题转换成max(min{x_a+y_b,x_b+y_a}+1)(x,y属于1到n),我们假设x_a+y_b<=x_b+y_a,那我们就是求出x_a+y_b的最大值,不等式转换一下,x_a-x_b<=y_a-y_b,那我们可以根据该式sort一下,每次更新一下最大的x_a,然后x_a+y_b+1就是最大值
#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) ((x)&(-x))
typedef long long LL;
typedef pair<int,int> pii; const int maxn = 2e5+; vector<int> G[maxn];
int d1[maxn], d2[maxn];
bool ks[maxn]; void bfs(int *dist, int s) {
dist[s] = ;
queue<int> q;
q.push(s);
while(!q.empty()) {
int u = q.front();
q.pop();
for(auto v : G[u]) {
if(dist[v] == -) {
q.push(v);
dist[v] = dist[u] + ;
}
}
}
} void run_case() {
int n, m, k;
cin >> n >> m >> k;
memset(d1, -, sizeof(d1)), memset(d2, -, sizeof(d2));
for(int i = ; i < k; ++i) {
int t; cin >> t;
ks[t] = true;
}
for(int i = ; i < m; ++i) {
int u, v;
cin >> u >> v;
G[u].push_back(v);
G[v].push_back(u);
}
bfs(d1, );
bfs(d2, n);
vector<pii> v;
for(int i = ; i <= n; ++i) if(ks[i]) v.emplace_back(d1[i], d2[i]);
sort(v.begin(), v.end(), [&](const pii &a, const pii &b) {
return a.first - a.second < b.first - b.second;
});
int ans = , mx = v[].first;
for(int i = ; i < v.size(); ++i) {
ans = max(ans, mx++v[i].second);
mx = max(mx, v[i].first);
}
cout << min(ans, d1[n]);
} int main() {
ios::sync_with_stdio(false), cin.tie();
//cout.setf(ios_base::showpoint);cout.precision(10);
//int t; cin >> t;
//while(t--)
run_case();
cout.flush();
return ;
}
Codeforces1307D. Cow and Fields的更多相关文章
- Codeforces 杂题集 2.0
记录一些没有写在其他随笔中的 Codeforces 杂题, 以 Problemset 题号排序 1326D2 - Prefix-Suffix Palindrome (Hard version) ...
- USACO 2.4 Cow Tours
Cow Tours Farmer John has a number of pastures on his farm. Cow paths connect some pastures with cer ...
- 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 线段树维护dp
题目 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 链接 http://www.lydsy.com/JudgeOnline/proble ...
- 4989: [Usaco2017 Feb]Why Did the Cow Cross the Road
题面:4989: [Usaco2017 Feb]Why Did the Cow Cross the Road 连接 http://www.lydsy.com/JudgeOnline/problem.p ...
- POJ 2018 Best Cow Fences(二分+最大连续子段和)
Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14601 Accepted: 4720 Desc ...
- POJ-2018 Best Cow Fences(二分加DP)
Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10174 Accepted: 3294 Desc ...
- 洛谷 P3659 [USACO17FEB]Why Did the Cow Cross the Road I G
//神题目(题目一开始就理解错了)... 题目描述 Why did the cow cross the road? Well, one reason is that Farmer John's far ...
- Cow Relays 【优先队列优化的BFS】USACO 2001 Open
Cow Relays Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Tota ...
- [BZOJ4990][Usaco2017 Feb]Why Did the Cow Cross the Road II dp
4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II Time Limit: 10 Sec Memory Limit: 128 MBSubmi ...
随机推荐
- Hyperledger Explorer
简介 Hyperledger Explorer is a simple, powerful, easy-to-use, well maintained, open source utility to ...
- 分布式一致性协议 --- Paxos
问题 Paxos 到底解决什么样的问题,动机是什么 Paxos 流程是怎么样的? Paxos 算法的缺陷是什么 概述 Paxos 是分布式一致性算法,根据少数服从多数的原则多个节点确定某个数值.通过学 ...
- 【PAT甲级】1095 Cars on Campus (30 分)
题意:输入两个正整数N和K(N<=1e4,K<=8e4),接着输入N行数据每行包括三个字符串表示车牌号,当前时间,进入或离开的状态.接着输入K次询问,输出当下停留在学校里的车辆数量.最后一 ...
- 【TCP/IP网络编程】:06基于UDP的服务器端/客户端
本篇文章简单描述了UDP传输协议的工作原理及特点. 理解UDP UDP和TCP一样同属于TCP/IP协议栈的第二层,即传输层. UDP套接字的特点 UDP的工作方式类似于传统的信件邮寄过程.寄信前应先 ...
- Halcon blob分析基本处理步骤
Halcon,blob分析 应用场景,二值化后的灰度图像对比度清晰 基本处理流程 1 读取图片 read_image(变量名,'路径') //halcon字符串使用单引号'' 2 预处理 2.1 RO ...
- numpy.bincount正确理解
今天看了个方法,numpy.bincount首先官网文档: numpy.bincount numpy.bincount(x, weights=None, minlength=0) Count numb ...
- XMPPFramework 框架
https://blog.csdn.net/qq_29846663/article/details/70170646 2017-04-14 11:37:02 于海明 阅读数 478更多 分类专栏: i ...
- 移除微信昵称中的emoji字符
移除微信昵称中的emoji字符: /** * 移除微信昵称中的emoji字符 * @param type $nickname * @return type */ function removeEmoj ...
- matplotlib显示AttributeError: 'module' object has no attribute 'verbose'
解决办法:file-settings-tools-python scientific,将show plots in toolwindow前面的对号去掉即可.
- Vue 项目中使用less
首先 你得有 完整的 Vue开发环境第一步 安装less 依赖 npm install less less-loader --save 第二步 修改webpack.config.js文件,配置load ...