提交Spark Application到环境中运行
spark-submit \
--name SQLContextApp \
--class com.imooc.spark.SQLContextApp \
--master local[2] \
/home/hadoop/lib/sql-1.0.jar \
/home/hadoop/app/spark-2.1.0-bin-2.6.0-cdh5.7.0/examples/src/main/resources/people.json

注意:
1)To use a HiveContext, you do not need to have an existing Hive setup
2)hive-site.xml

create table t(key string, value string);
explain extended select a.key*(2+3), b.value from t a join t b on a.key = b.key and a.key > 3;

== Parsed Logical Plan ==
'Project [unresolvedalias(('a.key * (2 + 3)), None), 'b.value]
+- 'Join Inner, (('a.key = 'b.key) && ('a.key > 3))
:- 'UnresolvedRelation `t`, a
+- 'UnresolvedRelation `t`, b

== Analyzed Logical Plan ==
(CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE)): double, value: string
Project [(cast(key#321 as double) * cast((2 + 3) as double)) AS (CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE))#325, value#324]
+- Join Inner, ((key#321 = key#323) && (cast(key#321 as double) > cast(3 as double)))
:- SubqueryAlias a
: +- MetastoreRelation default, t
+- SubqueryAlias b
+- MetastoreRelation default, t

== Optimized Logical Plan ==
Project [(cast(key#321 as double) * 5.0) AS (CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE))#325, value#324]
+- Join Inner, (key#321 = key#323)
:- Project [key#321]
: +- Filter (isnotnull(key#321) && (cast(key#321 as double) > 3.0))
: +- MetastoreRelation default, t
+- Filter (isnotnull(key#323) && (cast(key#323 as double) > 3.0))
+- MetastoreRelation default, t

== Physical Plan ==
*Project [(cast(key#321 as double) * 5.0) AS (CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE))#325, value#324]
+- *SortMergeJoin [key#321], [key#323], Inner
:- *Sort [key#321 ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(key#321, 200)
: +- *Filter (isnotnull(key#321) && (cast(key#321 as double) > 3.0))
: +- HiveTableScan [key#321], MetastoreRelation default, t
+- *Sort [key#323 ASC NULLS FIRST], false, 0
+- Exchange hashpartitioning(key#323, 200)
+- *Filter (isnotnull(key#323) && (cast(key#323 as double) > 3.0))
+- HiveTableScan [key#323, value#324], MetastoreRelation default, t

thriftserver/beeline的使用
1) 启动thriftserver: 默认端口是10000 ,可以修改
2)启动beeline
beeline -u jdbc:hive2://localhost:10000 -n hadoop

修改thriftserver启动占用的默认端口号:
./start-thriftserver.sh \
--master local[2] \
--jars ~/software/mysql-connector-java-5.1.27-bin.jar \
--hiveconf hive.server2.thrift.port=14000

beeline -u jdbc:hive2://localhost:14000 -n hadoop

thriftserver和普通的spark-shell/spark-sql有什么区别?
1)spark-shell、spark-sql都是一个spark application;
2)thriftserver, 不管你启动多少个客户端(beeline/code),永远都是一个spark application
解决了一个数据共享的问题,多个客户端可以共享数据;

注意事项:在使用jdbc开发时,一定要先启动thriftserver
Exception in thread "main" java.sql.SQLException:
Could not open client transport with JDBC Uri: jdbc:hive2://hadoop001:14000:
java.net.ConnectException: Connection refused

【慕课网实战】五、以慕课网日志分析为例 进入大数据 Spark SQL 的世界的更多相关文章

  1. 【慕课网实战】八、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    用户行为日志:用户每次访问网站时所有的行为数据(访问.浏览.搜索.点击...)     用户行为轨迹.流量日志   日志数据内容: 1)访问的系统属性: 操作系统.浏览器等等 2)访问特征:点击的ur ...

  2. 以慕课网日志分析为例-进入大数据Spark SQL的世界

    下载地址.请联系群主 第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目 ...

  3. 以某课网日志分析为例 进入大数据 Spark SQL 的世界

    第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目中涉及的Hadoop. ...

  4. 【慕课网实战】九、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    即席查询普通查询 Load Data1) RDD DataFrame/Dataset2) Local Cloud(HDFS/S3) 将数据加载成RDDval masterLog = sc.textFi ...

  5. 【慕课网实战】七、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    用户:     方便快速从不同的数据源(json.parquet.rdbms),经过混合处理(json join parquet),     再将处理结果以特定的格式(json.parquet)写回到 ...

  6. 【慕课网实战】六、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    DataFrame它不是Spark SQL提出的,而是早起在R.Pandas语言就已经有了的.   A Dataset is a distributed collection of data:分布式的 ...

  7. 【慕课网实战】四、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    文本文件进行统计分析:id, name, age, city1001,zhangsan,45,beijing1002,lisi,35,shanghai1003,wangwu,29,tianjin... ...

  8. 【慕课网实战】三、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    前置要求: 1)Building Spark using Maven requires Maven 3.3.9 or newer and Java 7+ 2)export MAVEN_OPTS=&qu ...

  9. 【慕课网实战】二、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    MapReduce的局限性: 1)代码繁琐: 2)只能够支持map和reduce方法: 3)执行效率低下: 4)不适合迭代多次.交互式.流式的处理:   框架多样化: 1)批处理(离线):MapRed ...

随机推荐

  1. yii2.0 引入autoload.php提示Operation not permitted

    open_basedir()配置下就可以了.比如目录是/www/ad/web/yii/就在/usr/local/nginx/conf/fastcgi.conf里面修改下配置 opendir=/www/ ...

  2. soa 和微服务的区别

    soa beased applications are compromised of more loosely coupled componets that use an enterprise ser ...

  3. linux下的dhcp服务器实现

    一.得到udhcpd(udhcp服务端): 1.解压busybox 2.配置busybox Networking Utilities——> [*] udhcp server(udhcpd) [* ...

  4. 认识border

    标签(空格分隔): border border的认识: border:边框的意思,描述盒子的边框,边框有三个要素: 粗细, 线性样式 ,颜色: <!DOCTYPE html> <ht ...

  5. python多线程的学习

    0x00.前言 学了一下python的多线程,threading模块 感觉挺有意思的,随便练手写了一个很粗陋的windows下多线程扫在线ip的脚本 脚本没什么技术含量,纯粹练手,扫一趟192的局域网 ...

  6. 爬虫学习--MOOC爬取豆瓣top250

    scrapy框架 scrapy是一套基于Twisted的异步处理框架,是纯python实现的爬虫框架,用户只需要定制开发几个模块就可以轻松实现一个爬虫,用来抓取网页内容或者各种图片. scrapy E ...

  7. vim常用配置 vimrc文件

    自从接触vim,自己瞎鼓捣.vimrc也有一段时间了.收集记录一下好用的配置. 一.奇技淫巧 1.折叠代码 折叠代码常常用在代码块较长的情况下,比如一个文件里定义了很多个函数,或者注释.括号影响的阅读 ...

  8. ERROR: 9-patch image C:\...\res\drawable\appwidget.9.png malformed. Frame pixels must be either solid or transparent (not intermediate alphas).

    this is the problem with latest adt that is 20.0.3. you can instead rename the *.9.png to *.png and ...

  9. MVC开发T4代码生成之一----文本模板基础

    T4文本模板 T4全写为Text Template Transformation Toolkit,是一种编程辅助工具,用来使程序代码自(懒)动(猿)生(福)成(利)的工具.MVC开发中大量使用了T4模 ...

  10. 聚簇索引(Clustered Index)和非聚簇索引 (Non- Clustered Index)

    本文转自https://my.oschina.net/u/1866821/blog/297673 索引的重要性数据库性能优化中索引绝对是一个重量级的因素,可以说,索引使用不当,其它优化措施将毫无意义. ...