【慕课网实战】五、以慕课网日志分析为例 进入大数据 Spark SQL 的世界
提交Spark Application到环境中运行
spark-submit \
--name SQLContextApp \
--class com.imooc.spark.SQLContextApp \
--master local[2] \
/home/hadoop/lib/sql-1.0.jar \
/home/hadoop/app/spark-2.1.0-bin-2.6.0-cdh5.7.0/examples/src/main/resources/people.json
注意:
1)To use a HiveContext, you do not need to have an existing Hive setup
2)hive-site.xml
create table t(key string, value string);
explain extended select a.key*(2+3), b.value from t a join t b on a.key = b.key and a.key > 3;
== Parsed Logical Plan ==
'Project [unresolvedalias(('a.key * (2 + 3)), None), 'b.value]
+- 'Join Inner, (('a.key = 'b.key) && ('a.key > 3))
:- 'UnresolvedRelation `t`, a
+- 'UnresolvedRelation `t`, b
== Analyzed Logical Plan ==
(CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE)): double, value: string
Project [(cast(key#321 as double) * cast((2 + 3) as double)) AS (CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE))#325, value#324]
+- Join Inner, ((key#321 = key#323) && (cast(key#321 as double) > cast(3 as double)))
:- SubqueryAlias a
: +- MetastoreRelation default, t
+- SubqueryAlias b
+- MetastoreRelation default, t
== Optimized Logical Plan ==
Project [(cast(key#321 as double) * 5.0) AS (CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE))#325, value#324]
+- Join Inner, (key#321 = key#323)
:- Project [key#321]
: +- Filter (isnotnull(key#321) && (cast(key#321 as double) > 3.0))
: +- MetastoreRelation default, t
+- Filter (isnotnull(key#323) && (cast(key#323 as double) > 3.0))
+- MetastoreRelation default, t
== Physical Plan ==
*Project [(cast(key#321 as double) * 5.0) AS (CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE))#325, value#324]
+- *SortMergeJoin [key#321], [key#323], Inner
:- *Sort [key#321 ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(key#321, 200)
: +- *Filter (isnotnull(key#321) && (cast(key#321 as double) > 3.0))
: +- HiveTableScan [key#321], MetastoreRelation default, t
+- *Sort [key#323 ASC NULLS FIRST], false, 0
+- Exchange hashpartitioning(key#323, 200)
+- *Filter (isnotnull(key#323) && (cast(key#323 as double) > 3.0))
+- HiveTableScan [key#323, value#324], MetastoreRelation default, t
thriftserver/beeline的使用
1) 启动thriftserver: 默认端口是10000 ,可以修改
2)启动beeline
beeline -u jdbc:hive2://localhost:10000 -n hadoop
修改thriftserver启动占用的默认端口号:
./start-thriftserver.sh \
--master local[2] \
--jars ~/software/mysql-connector-java-5.1.27-bin.jar \
--hiveconf hive.server2.thrift.port=14000
beeline -u jdbc:hive2://localhost:14000 -n hadoop
thriftserver和普通的spark-shell/spark-sql有什么区别?
1)spark-shell、spark-sql都是一个spark application;
2)thriftserver, 不管你启动多少个客户端(beeline/code),永远都是一个spark application
解决了一个数据共享的问题,多个客户端可以共享数据;
注意事项:在使用jdbc开发时,一定要先启动thriftserver
Exception in thread "main" java.sql.SQLException:
Could not open client transport with JDBC Uri: jdbc:hive2://hadoop001:14000:
java.net.ConnectException: Connection refused
【慕课网实战】五、以慕课网日志分析为例 进入大数据 Spark SQL 的世界的更多相关文章
- 【慕课网实战】八、以慕课网日志分析为例 进入大数据 Spark SQL 的世界
用户行为日志:用户每次访问网站时所有的行为数据(访问.浏览.搜索.点击...) 用户行为轨迹.流量日志 日志数据内容: 1)访问的系统属性: 操作系统.浏览器等等 2)访问特征:点击的ur ...
- 以慕课网日志分析为例-进入大数据Spark SQL的世界
下载地址.请联系群主 第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目 ...
- 以某课网日志分析为例 进入大数据 Spark SQL 的世界
第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目中涉及的Hadoop. ...
- 【慕课网实战】九、以慕课网日志分析为例 进入大数据 Spark SQL 的世界
即席查询普通查询 Load Data1) RDD DataFrame/Dataset2) Local Cloud(HDFS/S3) 将数据加载成RDDval masterLog = sc.textFi ...
- 【慕课网实战】七、以慕课网日志分析为例 进入大数据 Spark SQL 的世界
用户: 方便快速从不同的数据源(json.parquet.rdbms),经过混合处理(json join parquet), 再将处理结果以特定的格式(json.parquet)写回到 ...
- 【慕课网实战】六、以慕课网日志分析为例 进入大数据 Spark SQL 的世界
DataFrame它不是Spark SQL提出的,而是早起在R.Pandas语言就已经有了的. A Dataset is a distributed collection of data:分布式的 ...
- 【慕课网实战】四、以慕课网日志分析为例 进入大数据 Spark SQL 的世界
文本文件进行统计分析:id, name, age, city1001,zhangsan,45,beijing1002,lisi,35,shanghai1003,wangwu,29,tianjin... ...
- 【慕课网实战】三、以慕课网日志分析为例 进入大数据 Spark SQL 的世界
前置要求: 1)Building Spark using Maven requires Maven 3.3.9 or newer and Java 7+ 2)export MAVEN_OPTS=&qu ...
- 【慕课网实战】二、以慕课网日志分析为例 进入大数据 Spark SQL 的世界
MapReduce的局限性: 1)代码繁琐: 2)只能够支持map和reduce方法: 3)执行效率低下: 4)不适合迭代多次.交互式.流式的处理: 框架多样化: 1)批处理(离线):MapRed ...
随机推荐
- Echars 地图属性详解
1.引入echarts库文件 <script charset="utf-8" type="text/javascript" language=" ...
- Linux 用户与组
在 Linux 操作系统下,如何添加一个新用户到一个特定的组中?如何同时将用户添加到多个组中?又如何将一个已存在的用户移动到某个组或者给他增加一个组?对于不常用 Linux 的人来讲,记忆 Linux ...
- Linux localtime_r调用的一个小问题
我们一个项目中有如下代码: time_t loc_time; loc_time = time(NULL); localtime_r(&loc_time,&ptr); 这段代码本意是获取 ...
- Spring 配置 定时任务
官档地址:https://docs.spring.io/spring/docs/5.1.4.RELEASE/spring-framework-reference/integration.html#sc ...
- JAVA获取客户端请求的当前网络ip地址(附:Nginx反向代理后获取客户端请求的真实IP)
1. JAVA获取客户端请求的当前网络ip地址: /** * 获取客户端请求的当前网络ip * @param request * @return */ public static String get ...
- Mybatis常用代码
以下使用的数据库是Mysql. Mybatis动态Sql: Mapper.xml如下: <select id="selectOrderList" resultMap=&quo ...
- 前后端分离框架前端react,后端springboot跨域问题分析
前后端分离框架前端react,后端springboot跨域问题分析 为啥跨域了 前端react的设置 springboot后端设置 为啥跨域了 由于前后端不在一个端口上,也是属于跨域问题的一种,所以必 ...
- django filter or 多条件查询
功能:django中实现多条件查询 或关系: from django.db.models import Q return qs.filter(Q(notice_to_group__contains=' ...
- 关于Android UI 优化
之前项目为了同时兼容tv和手机端的UI,使用了百分比布局来动态计算控件的宽高,这种适配方案只关心屏幕的宽高(分辨率),与屏幕的像素密度无关. 在新的项目里也使用了这种方案.但是由于项目的运行硬件计算能 ...
- JavaScript new Date()在Safari上的坑
问题描述 我们经常用yyyy-MM-dd HH:mm:ss格式表示日期,如2018-11-11 00:00:00,在js开发中也经常会把此格式字符串格式化为javascript Date类型,如new ...