提交Spark Application到环境中运行
spark-submit \
--name SQLContextApp \
--class com.imooc.spark.SQLContextApp \
--master local[2] \
/home/hadoop/lib/sql-1.0.jar \
/home/hadoop/app/spark-2.1.0-bin-2.6.0-cdh5.7.0/examples/src/main/resources/people.json

注意:
1)To use a HiveContext, you do not need to have an existing Hive setup
2)hive-site.xml

create table t(key string, value string);
explain extended select a.key*(2+3), b.value from t a join t b on a.key = b.key and a.key > 3;

== Parsed Logical Plan ==
'Project [unresolvedalias(('a.key * (2 + 3)), None), 'b.value]
+- 'Join Inner, (('a.key = 'b.key) && ('a.key > 3))
:- 'UnresolvedRelation `t`, a
+- 'UnresolvedRelation `t`, b

== Analyzed Logical Plan ==
(CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE)): double, value: string
Project [(cast(key#321 as double) * cast((2 + 3) as double)) AS (CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE))#325, value#324]
+- Join Inner, ((key#321 = key#323) && (cast(key#321 as double) > cast(3 as double)))
:- SubqueryAlias a
: +- MetastoreRelation default, t
+- SubqueryAlias b
+- MetastoreRelation default, t

== Optimized Logical Plan ==
Project [(cast(key#321 as double) * 5.0) AS (CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE))#325, value#324]
+- Join Inner, (key#321 = key#323)
:- Project [key#321]
: +- Filter (isnotnull(key#321) && (cast(key#321 as double) > 3.0))
: +- MetastoreRelation default, t
+- Filter (isnotnull(key#323) && (cast(key#323 as double) > 3.0))
+- MetastoreRelation default, t

== Physical Plan ==
*Project [(cast(key#321 as double) * 5.0) AS (CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE))#325, value#324]
+- *SortMergeJoin [key#321], [key#323], Inner
:- *Sort [key#321 ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(key#321, 200)
: +- *Filter (isnotnull(key#321) && (cast(key#321 as double) > 3.0))
: +- HiveTableScan [key#321], MetastoreRelation default, t
+- *Sort [key#323 ASC NULLS FIRST], false, 0
+- Exchange hashpartitioning(key#323, 200)
+- *Filter (isnotnull(key#323) && (cast(key#323 as double) > 3.0))
+- HiveTableScan [key#323, value#324], MetastoreRelation default, t

thriftserver/beeline的使用
1) 启动thriftserver: 默认端口是10000 ,可以修改
2)启动beeline
beeline -u jdbc:hive2://localhost:10000 -n hadoop

修改thriftserver启动占用的默认端口号:
./start-thriftserver.sh \
--master local[2] \
--jars ~/software/mysql-connector-java-5.1.27-bin.jar \
--hiveconf hive.server2.thrift.port=14000

beeline -u jdbc:hive2://localhost:14000 -n hadoop

thriftserver和普通的spark-shell/spark-sql有什么区别?
1)spark-shell、spark-sql都是一个spark application;
2)thriftserver, 不管你启动多少个客户端(beeline/code),永远都是一个spark application
解决了一个数据共享的问题,多个客户端可以共享数据;

注意事项:在使用jdbc开发时,一定要先启动thriftserver
Exception in thread "main" java.sql.SQLException:
Could not open client transport with JDBC Uri: jdbc:hive2://hadoop001:14000:
java.net.ConnectException: Connection refused

【慕课网实战】五、以慕课网日志分析为例 进入大数据 Spark SQL 的世界的更多相关文章

  1. 【慕课网实战】八、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    用户行为日志:用户每次访问网站时所有的行为数据(访问.浏览.搜索.点击...)     用户行为轨迹.流量日志   日志数据内容: 1)访问的系统属性: 操作系统.浏览器等等 2)访问特征:点击的ur ...

  2. 以慕课网日志分析为例-进入大数据Spark SQL的世界

    下载地址.请联系群主 第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目 ...

  3. 以某课网日志分析为例 进入大数据 Spark SQL 的世界

    第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目中涉及的Hadoop. ...

  4. 【慕课网实战】九、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    即席查询普通查询 Load Data1) RDD DataFrame/Dataset2) Local Cloud(HDFS/S3) 将数据加载成RDDval masterLog = sc.textFi ...

  5. 【慕课网实战】七、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    用户:     方便快速从不同的数据源(json.parquet.rdbms),经过混合处理(json join parquet),     再将处理结果以特定的格式(json.parquet)写回到 ...

  6. 【慕课网实战】六、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    DataFrame它不是Spark SQL提出的,而是早起在R.Pandas语言就已经有了的.   A Dataset is a distributed collection of data:分布式的 ...

  7. 【慕课网实战】四、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    文本文件进行统计分析:id, name, age, city1001,zhangsan,45,beijing1002,lisi,35,shanghai1003,wangwu,29,tianjin... ...

  8. 【慕课网实战】三、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    前置要求: 1)Building Spark using Maven requires Maven 3.3.9 or newer and Java 7+ 2)export MAVEN_OPTS=&qu ...

  9. 【慕课网实战】二、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    MapReduce的局限性: 1)代码繁琐: 2)只能够支持map和reduce方法: 3)执行效率低下: 4)不适合迭代多次.交互式.流式的处理:   框架多样化: 1)批处理(离线):MapRed ...

随机推荐

  1. 转载——JavaScript学习笔记:取数组中最大值和最小值

    转载自:http://www.w3cplus.com/javascript/calculate-the-max-min-value-from-an-array.html. 取数组中最大值 可以先把思路 ...

  2. 源码解析之ConcurrentHashmap

    ConcurrentHashmap算是我看的集合源码里最难理解的了(当然ConcurrentLinkedList虽然代码少但理解起来也累),在Java1.8版本中DougLea大师巧通过妙地代码把锁粒 ...

  3. 冒泡排序 & 选择排序(升序)

    软件工程上老师讲流程图时,要求画冒泡排序和选择排序的流程图--------问题来了,故想基于百度两种排序后,自我总结的写些什么 请将一维数组a[n] 里面的 n个元素  升序排好 ---------- ...

  4. FormsAuthentication 票据前后台登录导致掉线

    一.前后台的用户信息都是采用.NET自带的FormsAuthentication 的ticket存取用户信息, 但是如果前后台用相同的用户使用票据这个会导致一方登陆后另一方会掉线,需要重新登陆. 二. ...

  5. linux环境下安装jmeter,启动执行脚本

    1.下载安装jmeter安装包 下载链接: https://pan.baidu.com/s/1KPhwNDsmTIAy41fEopHQEw 提取码: spwd 2.上传linux平台,解压jmeter ...

  6. js动态添加元素绑定事件问题

    //开始是直接普通写的绑定click事件 其中li a i 中的i是动态添加的 结果是触发不了..$("li a i").click(function () { $(this).m ...

  7. 关于微信小程序appsecret保护的问题

    本地后端代码中通常会配置 appid 和 appsecret,直接 push 到 公有 git 库会导致所有人可见.但其他人由于不是开发者有了别的项目的 secret 用处不大.但仍建议采用某种方法加 ...

  8. 010Edit手写PE

    前言PE结构DOS头IMAGE_DOS_HEADERPE头介绍总大小[248字节]结构体含义标记(4字节)0x4550文件头(20字节)扩展头(224字节)为程序添加ExitProcess函数 前言 ...

  9. Module 的语法

    模块功能主要由两个命令构成:export和import.export命令用于规定模块的对外接口,import命令用于输入其他模块提供的功能. 一个模块就是一个独立的文件.该文件内部的所有变量,外部无法 ...

  10. 服务管理之httpd

    目录 1. httpd简介 2. httpd版本 2.2 httpd-2.4新增的模块 3. httpd基础 3.1 httpd自带的工具程序 3.2 rpm包安装的httpd程序环境 3.3 web ...