CodeForces 407C 组合数学(详解)
题面:
http://codeforces.com/problemset/problem/407/C
一句话题意:给一个长度为n的序列g,m次操作,每次操作(l,r,k)表示将g[l]~g[r]的每个数g[j](l<=j<=r)加上c(j-l+k,k),输出经过m操作后的最终序列(mod 1e9+7)(n,m<=1e5,k<=100)。
题解:
首先看到这个题瞬间想到数据结构,但发现一次修改操作中每个点的增加值都不同后果断放弃。又因为发现这题只有一次询问,就考虑能不能先将每次操作存下来,最后再进行统一递推。又看到了k好小。。于是就可以乱搞了!
我们先考虑组合数的递推,c(n,m)=c(n-1,m)+c(n-1,m-1)。那么观察操作,假设我们在修改g[x],并且x>l,那么g[x-1]已经修改完了,考虑g[x-1]的增加值为c(x-1-l+k,k),而g[x]的值增加了c(x-l+k,k),又因为c(x-l+k,k)=c(x-l-1,k)+c(x-l-1,k-1),但是,显然只存下每个点的c(x-l+k,k)和每个点的c(x-l+k,k-1)是远远不够的,因为这样的话就只能推出c(x-l+k+1,k),而无法推出c(x-l+k+1,k-1),接着就无法推出c(x-l+k+2,k),等于说这次操作就无法递推完。因此我们只要在每一次操作的l处处理出c(k,0~k),就可以做到递推出每次操作对于每个数的增加值,欸那这有什么用呢,欸当然有用了!又因为加法有交换律和结合律,所以我们只要在每个l上计算好,在r+1处减去,就可以O(n)递推出整个序列!因为每在一个l处要处理c(k,0~k),处理m次,所以操作的总复杂度为O(mk),最终递推每推一步都要推k次组合数。因此整套代码的总复杂度为O(mk+nk)!!!!!
如果还有不懂的那就看代码然后感性理解一下qwq
P.S. 对于组合数我们是要处理阶乘的逆元(inv)的,有一个O(n)递推1~n逆元的方法:
首先我们考虑如果知道了x+1~n的阶乘的inv,如何得到x!的inv。。
根据逆元的定义:n!*inv(n!)=(n-1)!*n*inv(n!)=1=(n-1)!*inv((n-1)!),,欸所以inv((n-1)!)=inv(n!)*n
代码:
#include<bits/stdc++.h> using namespace std; typedef long long ll;
typedef double dd;
const int maxn=1e5+;
const ll p=1e9+;
ll fac[maxn],inv[maxn],g[maxn],ad[maxn][];
int n,m; ll qpow(ll x,ll b){
ll sum=;
while(b){
if(b&) sum=sum*x%p;
x=x*x%p; b>>=;
}
return sum;
} void init(){
fac[]=;
for(int i=;i<=;i++)
fac[i]=(ll)i*fac[i-]%p;
inv[]=qpow(fac[],p-);
for(int i=-;i>=;i--)
inv[i]=(ll)inv[i+]*(i+)%p;
} ll c(int x,int y){
if(x<y) return ;
return fac[x]*inv[y]%p*inv[x-y]%p;
} int main(){
scanf("%d%d",&n,&m);
init();
for(int i=;i<=n;i++)
scanf("%lld",&g[i]); int l,r,k;
for(int j=;j<=m;j++){
scanf("%d%d%d",&l,&r,&k);
for(int i=;i<=k;i++)
ad[l][i]=(ad[l][i]+c(k,k-i))%p,
ad[r+][i]=(ad[r+][i]-c(r+-l+k,k-i)+p)%p;
} for(int i=;i<=n;i++)
for(int j=;j>=;j--)
ad[i][j]=(ad[i][j]+ad[i-][j]+ad[i-][j+]+p)%p; for(int i=;i<=n;i++)
printf("%lld ",(g[i]+ad[i][]+p)%p); return ;
}
CodeForces 407C 组合数学(详解)的更多相关文章
- 线段树详解 (原理,实现与应用)(转载自:http://blog.csdn.net/zearot/article/details/48299459)
原文地址:http://blog.csdn.net/zearot/article/details/48299459(如有侵权,请联系博主,立即删除.) 线段树详解 By 岩之痕 目录: 一:综述 ...
- 详解OJ(Online Judge)中PHP代码的提交方法及要点【举例:ZOJ 1001 (A + B Problem)】
详解OJ(Online Judge)中PHP代码的提交方法及要点 Introduction of How to submit PHP code to Online Judge Systems Int ...
- SQLServer 常见SQL笔试题之语句操作题详解
SqlServer 常见SQL笔试题之语句操作题详解 by:授客 QQ:1033553122 测试数据库 CREATE DATABASE handWriting ON PRIMARY ( name = ...
- codeforces 407C Curious Array
codeforces 407C Curious Array UPD: 我觉得这个做法比较好理解啊 参考题解:https://www.cnblogs.com/ChopsticksAN/p/4908377 ...
- (转)dp动态规划分类详解
dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...
- dsu on tree (树上启发式合并) 详解
一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...
- Linq之旅:Linq入门详解(Linq to Objects)
示例代码下载:Linq之旅:Linq入门详解(Linq to Objects) 本博文详细介绍 .NET 3.5 中引入的重要功能:Language Integrated Query(LINQ,语言集 ...
- 架构设计:远程调用服务架构设计及zookeeper技术详解(下篇)
一.下篇开头的废话 终于开写下篇了,这也是我写远程调用框架的第三篇文章,前两篇都被博客园作为[编辑推荐]的文章,很兴奋哦,嘿嘿~~~~,本人是个很臭美的人,一定得要截图为证: 今天是2014年的第一天 ...
- EntityFramework Core 1.1 Add、Attach、Update、Remove方法如何高效使用详解
前言 我比较喜欢安静,大概和我喜欢研究和琢磨技术原因相关吧,刚好到了元旦节,这几天可以好好学习下EF Core,同时在项目当中用到EF Core,借此机会给予比较深入的理解,这里我们只讲解和EF 6. ...
随机推荐
- 安装openssl
此方法安装原因: 由于我用是非企业版 redhat 没有注册 有很多的yum 不能安装 openssl是在其中. 开始安装: 1.虚拟机挂载ios 镜像文件 2.进入终端 cd /media/RH ...
- Granfana+PostgreSQL
建表: create table pdm_log( id serial primary key, date_time timestamp with time zone DEFAULT CURRENT_ ...
- jQuery-mobilevalidate使用 的一些心得,小小总结
在做M站时比较纠结的是表单验证,不像pc端,移动端的验证要求插件更小更轻量,更加灵活,说不定是冒气泡的报错提示?! 介绍一款好用的移动端的表单验证插件:jQuery-mobilevalidate: 代 ...
- Python 基础知识----数据类型
一.Number 类型(数值类型) 二.String 类型 (字符串类型) 三.List 类型 (列表类型) 是一种常用的序列类型簇,List 用中括号 [ ] 表示,不同的元素(任意类型的值)之间以 ...
- MVC最全jar包
<dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> & ...
- mysql高可用架构之MHA,haproxy实现读写分离详解
MySQL高可用架构之MHA 一.运维人员需要掌握的MySQL技术: 1.基本SQL语句 2.基本的管理[库表数据的管理 权限的管理] 3.容灾 保证数据不丢失. 二.工作中MySQ ...
- 阿里p3c(代码规范,eclipse插件、模版,idea插件)
阿里p3c 一.说明 代码规范检查插件p3c,是根据<阿里巴巴Java开发手册>转化而成的自动化插件. (高级黑:P-3C“Orion”,反潜巡逻机,阿里大概取p3c先进,监测,发现潜在问 ...
- Lodop打印维护PRINT_SETUP本地缓存ini文件
针对千差万别的客户端,Lodop提供了打印维护(PRINT_SETUP),可以针对某个客户端微调,调整结果保存在客户端本地,不会影响其他访问网站的用户的使用. 打印维护使用方法:1.PRINT_INI ...
- SpringBoot2.0.3 + SpringSecurity5.0.6 + vue 前后端分离认证授权
新项目引入安全控制 项目中新近添加了Spring Security安全组件,前期没怎么用过,加之新版本少有参考,踩坑四天,终完成初步解决方案.其实很简单,Spring Security5相比之前版本少 ...
- Spring Boot自动配置与Spring 条件化配置
SpringBoot自动配置 SpringBoot的自动配置是一个运行时(应用程序启动时)的过程,简化开发时间,无需浪费时间讨论具体的Spring配置,只需考虑如何利用SpringBoot的自动配置即 ...