首先我们发现$\frac{b+\sqrt{d}}{2}$这个形式好像一元二次方程的求根公式啊(???反正我发现不了)

然后我们又想到虽然这个东西不好求但是$(\frac{b-\sqrt{d}}{2})^n$好像挺好求的啊(???反正我想不到)(由题目给的范围,这玩意在(-1,1))

于是把这个方程写出来:$x^2-b+\frac{b^2-d}{4}=0$,设它的两根是$x_1=\frac{b+\sqrt{d}}{2} , x_2=\frac{b-\sqrt{d}}{2}$

于是就是要求$\lfloor x_1^n+x_2^n-x_2^n \rfloor$

我们把$x_1^n+x_2^n$单拎出来,分解一下,得到$x_1^n+x_2^n = (x_1+x_2)(x_1^{n-1}+x_2^{n-1}) - x_1x_2(x_1^{n-2}+x_2^{n-2}) $

然后$x_1+x_2$和$x_1x_2$可以用韦达定理算,再把$x_1^i+x_2^i$设成f[i],就可以用矩阵快速幂优化了

可以发现它是个整数,最后讨论一下$x_2^n$就行了

(模数巨大,不光要用龟速乘,还要用unsigned long long)

 #include<bits/stdc++.h>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pa;
const ull P=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} ull fmul(ull a,ull b){
ull re=;
while(b){
if(b&) re=(re+a)%P;
a=(a+a)%P,b>>=;
}return re;
} ull b,d,n; ull fpow(ull x){
ull f[];f[]=b,f[]=;
ull m[][],tmp[][];
m[][]=b,m[][]=,m[][]=(d-b*b)/,m[][]=;
while(x){
if(x&){
CLR(tmp,);
for(int i=;i<=;i++){
for(int j=;j<=;j++){
tmp[][i]=(tmp[][i]+fmul(f[j],m[j][i]))%P;
}
}
f[]=tmp[][],f[]=tmp[][];
}
CLR(tmp,);
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
tmp[i][j]=(tmp[i][j]+fmul(m[i][k],m[k][j]))%P;
}
}
}
memcpy(m,tmp,sizeof(m));
x>>=;
}return f[];
} int main(){
//freopen("","r",stdin);
int i,j,k;
b=rd(),d=rd(),n=rd();
if(n==) printf("1\n");
else{
ull ans=fpow(n-);
if(!(n&)&&d!=b*b) ans=(P+ans-)%P;
printf("%lld\n",ans);
} return ;
}

luogu3263/bzoj4002 有意义的字符串 (数学+矩阵快速幂)的更多相关文章

  1. $bzoj1009-HNOI2008$ $GT$考试 字符串$dp$ 矩阵快速幂

    题面描述 阿申准备报名参加\(GT\)考试,准考证号为\(N\)位数\(x_1,x_2,...,x_n\ (0\leq x_i\leq 9)\),他不希望准考证号上出现不吉利的数字. 他的不吉利数字\ ...

  2. HDU 4565 So Easy!(数学+矩阵快速幂)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description A sequence Sn is defined as:Where a, b, n, m are positive integers.┌x┐is the cei ...

  3. HDU2604:Queuing(矩阵快速幂+递推)

    传送门 题意 长为len的字符串只由'f','m'构成,有2^len种情况,问在其中不包含'fmf','fff'的字符串有多少个,此处将队列换成字符串 分析 矩阵快速幂写的比较崩,手生了,多练! 用f ...

  4. 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)

    [BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...

  5. BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法

    BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行 ...

  6. [ An Ac a Day ^_^ ] hdu 4565 数学推导+矩阵快速幂

    从今天开始就有各站网络赛了 今天是ccpc全国赛的网络赛 希望一切顺利 可以去一次吉大 希望还能去一次大连 题意: 很明确是让你求Sn=[a+sqrt(b)^n]%m 思路: 一开始以为是水题 暴力了 ...

  7. Luogu 3758 [TJOI2017]可乐(有向图邻接矩阵幂的意义 矩阵快速幂)

    题目描述 加里敦星球的人们特别喜欢喝可乐.因而,他们的敌对星球研发出了一个可乐机器人,并且放在了加里敦星球的1号城市上.这个可乐机器人有三种行为: 停在原地,去下一个相邻的城市,自爆.它每一秒都会随机 ...

  8. 【做题】SRM701 Div1 Hard - FibonacciStringSum——数学和式&矩阵快速幂

    原文链接 https://www.cnblogs.com/cly-none/p/SRM701Div1C.html 题意:定义"Fibonacci string"为没有连续1的01串 ...

  9. BZOJ2326 HNOI2011数学作业(矩阵快速幂)

    考虑暴力,那么有f(n)=(f(n-1)*10digit+n)%m.注意到每次转移是类似的,考虑矩阵快速幂.首先对于位数不同的数字分开处理,显然这只有log种.然后就得到了f(n)=a·f(n-1)+ ...

随机推荐

  1. Hibernate two table same id

    Hibernate更新数据(不用update也可以) - 森林木马 - 博客园 https://www.cnblogs.com/owenma/p/3481497.html hibernate级联更新会 ...

  2. [编程笔记]第一章 C语言概述

    //C语言学习笔记 第一讲 C语言概述 第二讲 基本编程知识 第三讲 运算符和表达式 第四讲 流程控制 第五讲 函数 第六讲 数组 第七讲 指针 第八讲 变量的作用域和存储方式 第九讲 拓展类型 第十 ...

  3. Netcat实用操作

    写久了web倦了,第n次开始尝试网络开发,于是熟悉一下常用工具. 尝试了一下netcat来测试服务器,或者充当客户端都异常好用.于是记录一下常用的一下命令 1. 充当服务器,或者客户端进行访问 通过n ...

  4. linux下使用sha256sum生成sha256校验文件,并校验其一致性

    [root@localhost ]# " >test.zip 生成sha256文件校验文件 [root@localhost ]# sha256sum test.zip >test ...

  5. windows 10 & 禁用服务.bat

    windows 10 & 禁用服务.bat 禁用服务.bat @echo off net stop WSearch net stop wuauserv net start TrustedIns ...

  6. dbExpress操作中用TDBGrid显示数据

    由于一些数据感知组件如TDBGrid等是需要用到数据缓存的,这和dbExpress组件的存取机制是矛盾的.所以当打开数据集时会出现如下内容的警告框:“Operation not allowed on ...

  7. vue監聽屬性

    使用$watch,就是監聽到某個值發生變化,執行回調函數.

  8. 二、core abp 数据库迁移

    一.数据库迁移-ABP(库) 1.配置链接数据库:  贴以下代码: { "ConnectionStrings": { "Default": "Serv ...

  9. c提取文件路径、文件名和后缀名

    /* MAKEPATH.C */ #include <stdlib.h> #include <stdio.h> void main( void ) { char path_bu ...

  10. Nginx map模块

    L77 Syntax: map string $variable { ... } Default: — Context: http map 指令 curl -H 'aaaa:4444444' -H ' ...