BZOJ1444[Jsoi2009]有趣的游戏——AC自动机+概率DP+矩阵乘法
题目描述

输入

注意 是0<=P, n , l, m≤ 10.
输出

样例输入
3 2 2
1 2
1 2
AB
BA
AA
input 2
3 4 2
1 2
1 2
AABA
ABAA
BAAA
样例输出
0.25
0.50
0.25
output 2
0.31
0.33
0.37
提示

一个显然的思路是在$AC$自动机上跑概率$DP$,答案就是当$T=∞$时,从根节点到每个终止节点的概率。那么我们可以建出$trie$图然后求出$trie$图的邻接矩阵,第$i$行第$j$列表示从$i$节点走到$j$节点的概率。因为到终止节点就会停止,所以终止节点到自己的概率为$1$。在保留两位小数的情况下只要对邻接矩阵进行$2^{50}$次矩乘即可得到在误差范围内的正确结果。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int tr[200][20];
int fail[200];
int cnt;
double f[200][200];
char ch[20];
int n,l,m;
int end[200];
double P[20];
double g[200][200];
int p,q;
int pos[20];
void build(char *s,int num)
{
int now=0;
for(int i=0;i<l;i++)
{
int x=s[i]-'A';
if(!tr[now][x])
{
tr[now][x]=++cnt;
}
now=tr[now][x];
}
end[now]=1;
pos[num]=now;
}
void getfail()
{
queue<int>q;
for(int i=0;i<m;i++)
{
if(tr[0][i])
{
q.push(tr[0][i]);
}
}
while(!q.empty())
{
int now=q.front();
q.pop();
for(int i=0;i<m;i++)
{
if(tr[now][i])
{
fail[tr[now][i]]=tr[fail[now]][i];
q.push(tr[now][i]);
}
else
{
tr[now][i]=tr[fail[now]][i];
}
}
}
}
int main()
{
scanf("%d%d%d",&n,&l,&m);
for(int i=0;i<m;i++)
{
scanf("%d%d",&p,&q);
P[i]=(double)p/(double)q;
}
for(int i=1;i<=n;i++)
{
scanf("%s",ch);
build(ch,i);
}
getfail();
for(int i=0;i<=cnt;i++)
{
if(end[i])
{
f[i][i]=1;
continue;
}
for(int j=0;j<m;j++)
{
f[i][tr[i][j]]+=P[j];
}
}
for(int T=1;T<=50;T++)
{
for(int i=0;i<=cnt;i++)
{
for(int j=0;j<=cnt;j++)
{
for(int k=0;k<=cnt;k++)
{
g[i][j]+=f[i][k]*f[k][j];
}
}
}
for(int i=0;i<=cnt;i++)
{
for(int j=0;j<=cnt;j++)
{
f[i][j]=g[i][j];
g[i][j]=0.00;
}
}
}
for(int i=1;i<=n;i++)
{
printf("%.2f\n",f[0][pos[i]]);
}
}
BZOJ1444[Jsoi2009]有趣的游戏——AC自动机+概率DP+矩阵乘法的更多相关文章
- 【BZOJ1444】[Jsoi2009]有趣的游戏 AC自动机+概率DP+矩阵乘法
[BZOJ1444][Jsoi2009]有趣的游戏 Description Input 注意 是0<=P Output Sample Input Sample Output HINT 30%的 ...
- BZOJ 1444 [Jsoi2009]有趣的游戏 (AC自动机 + 概率DP + Gauss)
1444: [Jsoi2009]有趣的游戏 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1382 Solved: 498[Submit][Statu ...
- [日常摸鱼]bzoj1444 [JSOI2009]有趣的游戏——AC自动机+矩阵
今天学校跳蚤市场摆摊聚众吸毒打call,东西卖了一百多好开心_(:з」∠)_ (然后大家中午就去吃了一顿好的x) 下午听演讲然后现在来填坑orz(其实是昨晚的坑) 题目:bzoj1444 先用字符串构 ...
- BZOJ 1444: [Jsoi2009]有趣的游戏 AC自动机+概率与期望+矩阵乘法
这道题还比较友好~首先,构建出来 $AC$ 自动机,那么我们要求的就是从 $0$ 号点走无限次走到一个终止节点的概率. 考虑构建转移矩阵 $M,$ $M_{i,j}$ 表示节点 $i$ 转移到节点 $ ...
- BZOJ2553[BeiJing2011]禁忌——AC自动机+概率DP+矩阵乘法
题目描述 Magic Land上的人们总是提起那个传说:他们的祖先John在那个东方岛屿帮助Koishi与其姐姐Satori最终战平.而后,Koishi恢复了读心的能力…… 如今,在John已经成为传 ...
- bzoj1444[Jsoi2009]有趣的游戏[AC自动机]
题面 bzoj 我要向师父学习善待每一只数据结构 考虑成环,那么高斯消元 然鹅这道题太小了 所以直接转移矩阵自乘就好啦 终点不向外连边 有一条向自己的,概率为一的自环来作为结尾 对于其他店 若有边\( ...
- BZOJ1444:[JSOI2009]有趣的游戏(AC自动机,矩阵乘法)
Description Input 注意 是0<=P, n , l, m≤ 10. Output Sample Input input 1 3 2 2 1 2 1 2 AB BA AA inpu ...
- BZOJ 1444: [Jsoi2009]有趣的游戏 [AC自动机 高斯消元]
1444: [Jsoi2009]有趣的游戏 题意:每种字母出现概率\(p_i\),有一些长度len的字符串,求他们出现的概率 套路DP的话,\(f[i][j]\) i个字符走到节点j的概率,建出转移矩 ...
- BZOJ 1444 [JSOI2009]有趣的游戏 (AC自动机、概率与期望DP、矩阵乘法)
诶这题洛谷居然没有??? 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1444 题解: 我见到主要有三种做法. 一是矩阵乘法.设\(d ...
随机推荐
- 四、Input框改placeholder中字体的颜色
Input框改placeholder中字体的颜色 input::-webkit-input-placeholder { color: #ccc; font-size: 12px; }
- H5 20-属性选择器上
20-属性选择器上 --> 我是段落1 我是段落2 我是段落3 我是段落4 我是段落5 <!DOCTYPE html> <html lang="en"> ...
- Codeforces Round #485 (Div. 2)-B-High School: Become Human
B. High School: Become Human time limit per test 1 second memory limit per test 256 megabytes input ...
- Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)
目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...
- elasticsearch数据输入和输出
Elastcisearch 是分布式的 文档 存储.它能存储和检索复杂的数据结构–序列化成为JSON文档–以 实时 的方式. 换句话说,一旦一个文档被存储在 Elasticsearch 中,它就是可以 ...
- Java对象的创建、内存布局和访问定位
在Java运行时数据区中,我们知道了虚拟机内存的概况,本文介绍虚拟机内存中的数据的其它细节,如对象如何创建.如何布局以及如何访问. 基于实用的原则,这里以HotSpot虚拟机和常用的内存区域Java堆 ...
- echarts图片保存
一.js: function updateChart(versionList,rateList) { option = { title: { text: '拖动频次' }, tooltip : { t ...
- MySQL 高可用性—keepalived+mysql双主
MySQL 高可用性—keepalived+mysql双主(有详细步骤和全部配置项解释) - 我的博客 - CSDN博客https://blog.csdn.net/qq_36276335/articl ...
- Mysql连接数、线程数、数据包
https://blog.csdn.net/qq_26545305/article/details/79675507
- 转:Linux下查看tomcat占用端口
https://blog.csdn.net/liufuwu1/article/details/71123597[root@server-crm mysql]# ps -ef | grep " ...