题目链接 \(Click\) \(Here\)

真心没啥东西,只要能\(Get\)到在数字输入的时候按位取模,以及除数也可以直接取模就可以了。(把每个数看做乘法原理和加法原理构造起来的即可。)

#include <bits/stdc++.h>
using namespace std; const int Mod = 19260817; int read_Mod () {
int s = 0, ch = getchar ();
while ('9' < ch || ch < '0') {
ch = getchar ();
}
while ('0' <= ch && ch <= '9') {
s = (s * 10 + ch - '0') % Mod;
ch = getchar ();
}
return s;
} int fpow (int x, int y) {
int res = 1;
while (y) {
if (y & 1) {
res = 1LL * res * x % Mod;
}
x = 1LL * x * x % Mod;
y >>= 1;
}
return res;
} int main () {
int a = read_Mod (), b = read_Mod ();
if (b == 0) cout << "Angry!" << endl;
else cout << (1LL * a * fpow (b, Mod - 2)) % Mod << endl;
}

Luogu P2613 【模板】有理数取余的更多相关文章

  1. [洛谷P2613] [模板] 有理数取余

    刷水题. 传送门 看似高精而非高精乃是此题最大亮点. 边读边取模技能get~ #include<cstdio> #define ll long long #define mod 19260 ...

  2. 洛谷 P2613 【模板】有理数取余

    P2613 [模板]有理数取余 题目描述 给出一个有理数c=\frac{a}{b}c=ba​,求c\ \bmod 19260817c mod19260817的值. 输入输出格式 输入格式: 一共两行. ...

  3. 洛谷——P2613 【模板】有理数取余

    P2613 [模板]有理数取余 读入优化预处理 $\frac {a}{b}\mod 19620817$ 也就是$a\times b^{-1}$ $a\times b^{-1}\mod 19620817 ...

  4. P2613 【模板】有理数取余 (数论)

    题目 P2613 [模板]有理数取余 解析 简单的数论题 发现并没有对小数取余这一说,所以我们把原式化一下, \[(c=\frac{a}{b})\equiv a\times b^{-1}(mod\ p ...

  5. 题解 P2613 【【模板】有理数取余】

    题目链接 我们先看这个式子: $c=\dfrac{a}{b}$ $ $ $ $ $mod$ $ $ $ $ $19260817$ 某正常高中生:这$……$ --- 对于这个 $c$ . 显然,它很可能 ...

  6. P2613 有理数取余

    原题链接 https://www.luogu.org/problemnew/show/P2613 在这里虽然是讲洛谷的题解,但用到的数论知识,归并到数论里也不为过! 进入正题: 首先看到题面:给出一个 ...

  7. 题解——洛谷P2613 【模板】有理数取余(扩展欧几里得算法+逆元)

    题面 题目描述 给出一个有理数 c=\frac{a}{b}  ​ ,求  c mod19260817  的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 \( a \) .第二行,一个整 ...

  8. P2613 【模板】有理数取余

    题目描述 给出一个有理数 $c=\frac{a}{b}$ ,求 c mod 19260817 的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 aa .第二行,一个整数 bb . 输出格 ...

  9. 数学【p2613】 【模板】有理数取余(费马小定理)

    题目描述 给出一个有理数 c=a/b ,求 c mod 19260817的值. 说明 对于所有数据, 0≤a,b≤10^10001 分析: 一看题 这么短 哇简单!况且19260817还是个素数!(美 ...

随机推荐

  1. 转 JQuery:常用方法一览

    出处 :http://www.cnblogs.com/Fooo/archive/2010/02/01/1661157.html 代码 Attribute:$(”p”).addClass(css中定义的 ...

  2. MySQL——安装、配置、启动服务、

    1.环境变量配置 将启动连接,加入环境变量中. mysqld  :启动服务端 msysql -u 用户名 -p 密码 : 启动客户端 2.windows服务:一直在运行中 E:\wupeiqi\mys ...

  3. 学习 Spring (十) 注解之 @Bean, @ImportResource, @Value

    Spring入门篇 学习笔记 @Bean @Bean 标识一个用于配置和初始化一个由 Spring IoC 容器管理的新对象的方法,类似于 XML 配置文件的 可以在 Spring 的 @Config ...

  4. Windows Server2008、IIS7启用CA认证及证书制作完整过程

    1         添加活动目录证书服务 1.1          打开服务器管理器,右键点击角色,选择“添加角色”,在“添加角色向导”窗口左侧面板选择“服务器角色”,然后勾选“Active Dire ...

  5. Redis之父表示ARM服务器没戏!

    ARM表示Neoverse N1平台和E1 CPU即将发布,Neoverse N1和E1采用7nm制程,并且为服务器和通信设备增加重要提升,拥有高可扩展性.高处理量以及高性能,将分别在2020年和20 ...

  6. 了解AutoCAD对象层次结构 —— 1 ——应用程序

    想象这样一个场景:当您开始一天的工作,坐到电脑前面,用鼠标双击桌面上的AutoCAD Civil 3D图标,这时一个AutoCAD Civil 3D应用程序将运行起来.打开Windows任务管理器,我 ...

  7. 【XSY2751】Mythological IV 线性插值

    题目描述 已知\(f(x)\)为\(k\)次多项式. 给你\(f(0),f(1),\ldots,f(k)\),求 \[ \sum_{i=1}^nf(i)q^i \] \(k\leq 500000,n\ ...

  8. Codeforces Global Round 2 D. Frets On Fire (动态开点线段树,沙雕写法)

    题目链接:D. Frets On Fire 思路:明明可以离散化+二分写,思路硬是歪到了线段树上,自闭了,真实弟弟,怪不得其他人过得那么快 只和查询的区间长度有关系,排完序如果相邻的两个点的差值小于等 ...

  9. Github Desktop 克隆新项目 Authentication failed. You may not have permission to access the repository or the repository may ha

    原来:ssh://git@github.com/xxx.git 改成:https://git@github.com/xxx.git

  10. MT【248】$f(x)=\dfrac{1}{x-1}+\dfrac{1}{x-b}$的性质

    探讨函数$f(x)=\dfrac{1}{x-a}+\dfrac{1}{x-b}$其中$a<b$的几个性质 分析:对称性:关于$(\dfrac{a+b}{2},0)$证明提示:$f(x)+f(a+ ...