CF961G Partitions
显然每个数的贡献可以一起算感性理解一下,于是答案就是权值总和乘以每个数被算了几次
那个"集合大小为\(|S|\)的集合权值为权值和乘\(|S|\)",可以看成一个数所在集合每有一个数,这个数就要算一次,于是那个次数就是所有情况中有某个数和多少次数出现在过同一个集合中.首先他一直会和自己在同一个集合,所以方案为\(S(n,k)\).然后对于其他数,方案为\(S(n-1,k)*(n-1)\),也就是其他数先放好,然后其他所有数都会让当前这个数多加1次
关于\(S(n,k)\)强烈安利这里
#include<bits/stdc++.h>
#define LL long long
#define db double
#define il inline
#define pb push_back
#define mk make_pair
#define ft first
#define sc second
using namespace std;
const int N=200000+10,mod=1e9+7;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,k,sm,fac[N],iac[N],inv[N];
LL fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;} return an;}
LL C(int n,int m){return m<0||n<m?0:1ll*fac[n]*iac[m]%mod*iac[n-m]%mod;}
LL S(int n,int m)
{
LL an=0;
for(int i=0;i<=m;++i)
{
int x=1ll*C(m,i)*fpow(m-i,n)%mod;
an=(an+((i&1)?mod-x:x))%mod;
}
return 1ll*an*iac[m]%mod;
}
int main()
{
n=rd(),k=rd();
for(int i=1;i<=n;++i) sm=(sm+rd())%mod;
fac[0]=1;
for(int i=1;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod;
iac[n]=fpow(fac[n],mod-2);
for(int i=n;i;--i) iac[i-1]=1ll*iac[i]*i%mod;
cout<<1ll*(S(n,k)+1ll*S(n-1,k)*(n-1)%mod)%mod*sm%mod;
return 0;
}
CF961G Partitions的更多相关文章
- CF961G Partitions(第二类斯特林数)
题目 CF961G 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limi ...
- CF961G Partitions(第二类斯特林数)
传送门 对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\) 那么分别讨论 如果这个元素自己 ...
- 题解 [CF961G] Partitions
题面 解析 首先我们观察这个定义, 可以发现每个元素在统计答案时是平等的, 也就是单个元素的权值对答案没有特别的影响. 设元素权值为\(w[i]\), 那么我们就可以知道答案是\(\sum_{i=1} ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ
因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...
- 【CF961G】Partitions 第二类斯特林数
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...
- 【CF961G】Partitions(第二类斯特林数)
[CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...
- 【cf961G】G. Partitions(组合意义+第二类斯特林数)
传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...
- 题解 CF961G 【Partitions】
题目传送门 题目大意 给出\(n,k\),以及\(w_{1,2,..,n}\),定义一个集合\(S\)的权值\(W(S)=|S|\sum_{x\in S} w_x\),定义一个划分\(R\)的权值为\ ...
- 【CodeForces】961 G. Partitions 斯特林数
[题目]G. Partitions [题意]n个数$w_i$,每个非空子集S的价值是$W(S)=|S|\sum_{i\in S}w_i$,一种划分方案的价值是所有非空子集的价值和,求所有划分成k个非空 ...
随机推荐
- Spring 依赖注入优化
Spring 依赖注入优化 原创: carl.zhao SpringForAll社区 今天 Spring 最大的好处就是依赖注入,关于什么是依赖注入,在Stack Overflow上面有一个问题,如何 ...
- Vue--组件嵌套
1.全局注册: 组件放到components文件夹内,建议组件名是什么行为的name名就是什么 main.js 引入组件:import Users from '组件位置' 注册全局组件:Vue.com ...
- A1002. A+B for Polynomials
This time, you are supposed to find A+B where A and B are two polynomials. Input Each input file con ...
- django 配置media 存放调用 图片、图标等文件
一.需求分析: 一般在网站开发中,有很多类似于用户头像.用户上传的文件,这些经常要改变的媒体文件,需要有一个地方存放,于是就需要media目录,起到跟static类似的功能. 二.在settings. ...
- CF954F Runner's Problem(DP+矩阵快速幂优化)
这题是一年前某场我参加过的Education Round codeforces的F题,当时我显然是不会的. 现在看看感觉应该是能做出的. 不扯了写题解: 考虑朴素的DP,在不存在障碍的情况下:f[i] ...
- 每天一个Linux命令 (转)
一. 文件目录操作命令: 1.每天一个linux命令(1):ls命令 2.每天一个linux命令(2):cd命令 3.每天一个linux命令(3):pwd命令 4.每天一个linux命令(4):mk ...
- 漫谈php框架之中间件
市面上常见的php框架有很多,最近因为有技术需求,所以对常见的php框架的中间件进行了一些了解.各个框架尽管在目标上对php框架的定义大同小异,但是在实现方式上却各有不同,且看下文: 定义 首先什么是 ...
- 25 个常用的 Linux iptables 规则
# 1. 删除所有现有规则 iptables -F # 2. 设置默认的 chain 策略 iptables -P INPUT DROP iptables -P FORWARD DROP ipta ...
- MySQL数据库优化_索引
1.添加索引后减少查询需要的行数,提高查询性能 (1) 建表 CREATE TABLE `site_user` ( `id` ) NOT NULL AUTO_INCREMENT COMMENT '自增 ...
- maven_问题
问题:was cached in the local repository, resolution will not be reattempted until the update interval ...