【AtCoder2134】ZigZag MST(最小生成树)

题面

洛谷

AtCoder

题解

这题就很鬼畜。。

既然每次连边,连出来的边的权值是递增的,所以拿个线段树xjb维护一下就可以做了。那么意味着只有前面的点集被连在一起之后才可能选择后面的边,因此我们可以强制修改一下边的连接方式,只需要把新加入的点和联通块中的任意一个点连接在一起就好了。那么可以先在\((A,B)\)之间连一条权值为\(C\)的边,接下来的所有边都可以连成\((A,A+1),(A+1,A+2)\)的形式。

这样子就可以把所有点排成一个环,维护相邻两个点之间的权值的最小值,那么可以从最小值开始把整个环扫一遍来更新整个环的答案。

这样子一共就产生了\(n+Q\)条边,直接跑克鲁斯卡尔就好了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAX 200200
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int u,v,w;}e[MAX<<1];
bool operator<(Line a,Line b){return a.w<b.w;}
int n,Q,m,v[MAX],f[MAX];long long ans=0;
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
int main()
{
n=read();Q=read();memset(v,127,sizeof(v));
while(Q--)
{
int A=read()+1,B=read()+1,C=read();
e[++m]=(Line){A,B,C};
v[A%n+1]=min(v[A%n+1],C+1);
v[B%n+1]=min(v[B%n+1],C+2);
}
int pos=1;
for(int i=2;i<=n;++i)if(v[i]<v[pos])pos=i;
for(int i=pos%n+1,j=pos;i!=pos;j=i,i=i%n+1)v[i]=min(v[i],v[j]+2);
for(int i=2;i<=n;++i)e[++m]=(Line){i-1,i,v[i]};
e[++m]=(Line){1,n,v[1]};
sort(&e[1],&e[m+1]);
for(int i=1;i<=n;++i)f[i]=i;
for(int i=1;i<=m;++i)
{
int u=getf(e[i].u),v=getf(e[i].v);
if(u==v)continue;
ans+=e[i].w;f[u]=v;
}
printf("%lld\n",ans);
return 0;
}

【AtCoder2134】ZigZag MST(最小生成树)的更多相关文章

  1. AT2134 Zigzag MST 最小生成树

    正解:最小生成树 解题报告: 先放下传送门QAQ 然后这题,首先可以发现这神奇的连边方式真是令人头大,,,显然要考虑转化掉QAQ 大概看一下可以发现点对的规律是,左边++,交换位置,再仔细想下,就每个 ...

  2. Atcoder CODE FESTIVAL 2016 Final G - Zigzag MST[最小生成树]

    题意:$n$个点,$q$次建边,每次建边选定$x,y$,权值$c$,然后接着$(y,x+1,c+1),(x+1,y+1,c+2),(y+1,x+2,c+3),(x+2,y+2,c+4)\dots$(画 ...

  3. [题解] [AtCoder2134] Zigzag MST

    题面 题解 考虑kruscal的过程 对于三个点\(x, y, x + 1\), 我们可以将\((x, y, z), (y, x + 1, z + 1)\)看做\((x, y, z), (x, x + ...

  4. Atcoder2134 Zigzag MST

    问题描述 We have a graph with N vertices, numbered 0 through N−1. Edges are yet to be added. We will pro ...

  5. MST最小生成树

    首先,贴上一个很好的讲解贴: http://www.wutianqi.com/?p=3012 HDOJ 1233 还是畅通工程 http://acm.hdu.edu.cn/showproblem.ph ...

  6. [BZOJ1937][SHOI2004]Mst最小生成树(KM算法,最大费用流)

    1937: [Shoi2004]Mst 最小生成树 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 802  Solved: 344[Submit][Sta ...

  7. 【BZOJ1937】[Shoi2004]Mst 最小生成树 KM算法(线性规划)

    [BZOJ1937][Shoi2004]Mst 最小生成树 Description Input 第一行为N.M,其中 表示顶点的数目, 表示边的数目.顶点的编号为1.2.3.…….N-1.N.接下来的 ...

  8. 【题解】 AT2134 Zigzag MST

    [题解]AT2134 Zigzag MST 一道MST好题 \(Anson\)有云: 要么是减少边的数量. 要么是改变连接边的方式. 那么如何减少边的数量呢?很简单,把所有不可能对答案产生贡献的边去掉 ...

  9. [poj1679]The Unique MST(最小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28207   Accepted: 10073 ...

随机推荐

  1. ibatis实战之插入数据(自动生成主键)

    ibatis实战之插入数据(自动生成主键) --------- 如果你将数据库设计为使用自动生成的主键,就可以使用ibatis的<selectKey>元素(该元素是<insert&g ...

  2. 利用php查看某个服务的进程数

    查看进程就是使用ps命令而已,只不顾ps的参数太多了. 使用php查询的话,必须要开启几个函数(可以执行外部程序的函数),参考官网:http://php.net/manual/zh/book.exec ...

  3. centos6.7用yum安装redis解决办法及IP限制配置

    在centos6.7用yum安装redis解决办法 - bluesky1 - 博客园 http://www.cnblogs.com/lanblogs/p/6104834.html yum instal ...

  4. [转帖]linux sed命令

    linux sed命令就是这么简单 https://www.cnblogs.com/wangqiguo/p/6718512.html 用到的最多的就是一个sed -i 's/nn/mm/' 的命令了. ...

  5. RedHat Enterprise Linux 6.4使用yum安装出现This system is not registered to Red Hat Subscription Management

    我虚拟机安装的系统是RedHat Enterprise Linux 6.4-i686,是32位的.使用yum命令安装软件时候出现以下错误: This system is not registered ...

  6. Struts2——namespace、action、以及path问题

    简单的介绍下Struts2中的几个简单的问题(namespace.action.以及path问题) namespace(命名空间) Namespace决定了action的访问路径,默认为“”,意味着可 ...

  7. nfs+keepalived高可用

    1台nfs主被服务器都下载nfs.keepalived yum install nfs-utils rpcbind keepalived -y 2台nfs服务器nfs挂载目录及配置必须相同 3.在主n ...

  8. rabbitmq 配置

    1, 安装 apt-get install rabbitmq-server -y 2, 打开管理页面 sudo rabbitmq-plugins enable rabbitmq_management ...

  9. Spring Boot 构建电商基础秒杀项目 (九) 商品列表 & 详情

    SpringBoot构建电商基础秒杀项目 学习笔记 ItemDOMapper.xml 添加 <select id="listItem" resultMap="Bas ...

  10. 前端传递给后端且通过cookie方式,尽量传递id

    前端传递给后端且通过cookie方式,尽量传递id