拉格朗日乘子法:对于等式约束的优化问题,求取最优值。

KKT条件:对于含有不等式约束的优化问题,求取最优值。

最优化问题分类:

(1)无约束优化问题:

  常常使用Fermat定理,即求取的导数,然后令其为零,可求得候选最优值。

(2)有等式约束的优化问题:

  使用拉格朗日乘子法,把等式约束用一个系数与写为一个式子,称为拉格朗日函数。再通过对各个参数求取导数,联立等式进行求取最优值。

 (3)有不等式约束的优化问题。.

  把所有的不等式约束、等式约束和目标函数全部写为一个式子:

  KKT条件的最优值必须满足以下条件:

  1、求导为零;

  2、

  3、

拉格朗日乘子法(Lagrange Multiplier)和KKT条件的更多相关文章

  1. 拉格朗日乘子法(Lagrange multiplier)和KKT条件

    拉格朗日乘子法: KKT条件:

  2. 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...

  3. 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    [整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...

  4. 装载:深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  5. Machine Learning系列--深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  6. 【机器学习】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  7. 支持向量机(SVM)必备概念(凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件、KKT条件)

    SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有 ...

  8. 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush ...

  9. 拉格朗日乘子法 Lagrange multipliers

  10. 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题

    1 前言 拉格朗日乘子法(Lagrange Multiplier)  和 KKT(Karush-Kuhn-Tucker)  条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...

随机推荐

  1. loadrunner 脚本优化-集合点设置

    脚本优化-集合点设置 by:授客 QQ:1033553122 添加集合点(Insert->Rendezvous) 当一个集合点被插入,VuGen往Vuser脚本中插入一个lr_rendezvou ...

  2. Android为TV端助力 StringBuffer 和StringBuilder

    如果我们的程序是在单线程下运行,或者是不必考虑到线程同步问题,我们应该优先使用StringBuilder类:如果要保证线程安全,自然是StringBuffer. 除了对多线程的支持不一样外,这两个类的 ...

  3. uni-app 子组件如何调用父组件的方法

    1.在父组件methods中定义一个方法: changeType:function(type){ this.typeActive = type; alert(type); } 2.在父组件引用子组件时 ...

  4. linux(centos)无中文输入,如何解决

    1.终端执行安装命令 yum install "@Chinese Support" 2.如下图,多出Input method 3.点击进行配置 4.reboot重启系统,新建一个文 ...

  5. Orchard详解--第七篇 拓展模块(译)

    Orchard作为一个组件化的CMS,它能够在运行时加载任意模块. Orchard和其它ASP.NET MVC应用一样,支持通过Visual Studio来加载已经编译为程序集的模块,且它还提供了自定 ...

  6. MapReduce ----倒排索引

    分别建立三个文件: file1txt file2.txt file3.txt 文件内容分别是: MapReduce is simple 和 MapReduce is powerful is simpl ...

  7. [20181225]12CR2 SQL Plan Directives.txt

    [20181225]12CR2 SQL Plan Directives.txt --//12C引入SQL PLAN Directives.12cR1版本会造成大量的动态取样,影响性能.许多人把OPTI ...

  8. 【MM系列】SAP的库存管理

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP的库存管理   前言部分 库存 ...

  9. c/c++ 智能指针 weak_ptr 使用

    智能指针 weak_ptr 使用 weak_ptr用途: 1,解决空悬指针问题 2,解决循环引用问题 weak_ptr特点:没有*操作和->操作 weak_ptr是不控制所指对象生存周期的智能指 ...

  10. Markdown编辑器开发记录(一):开发的初衷和初期踩的坑

    先说下选择Markdown编辑器的原因,我们进行平台开发,需要很多的操作手册和API文档,要在网站中展示出来就需要是HTML格式的文件,但是由于内容很多,不可能全部由技术人员进行文档的编写,如果是只有 ...