theano sparse_block_dot
theano 中的一个函数 sparse_block_dot;
Function:
for b in range(batch_size):
for j in range(o.shape[1]):
for i in range(h.shape[1]):
o[b, j, :] += numpy.dot(h[b, i], W[iIdx[b, i], oIdx[b, j]])
Image Example

Input Parameter
- W (iBlocks, oBlocks, iSize, oSize) – weight matrix
- h (batch, iWin, iSize) – input from lower layer (sparse)
- inputIdx (batch, iWin) – indexes of the input blocks
- b (oBlocks, oSize) – bias vector
- outputIdx (batch, oWin) – indexes of the output blocks
Return
- dot(W[i, j], h[i]) + b[j] #but b[j] is only added once
- shape: (batch, oWin, oSize)
Applications
used form calculating theano.tensor.nnet.h_softmax;
Codes
def h_softmax(x, batch_size, n_outputs, n_classes, n_outputs_per_class,
W1, b1, W2, b2, target=None):
"Two-level hierarchical softmax."
# First softmax that computes the probabilities of belonging to each class
class_probs = theano.tensor.nnet.softmax(tensor.dot(x, W1) + b1)
if target is None: # Computes the probabilites of all the outputs
# Second softmax that computes the output probabilities
activations = tensor.tensordot(x, W2, (1, 1)) + b2
output_probs = theano.tensor.nnet.softmax(
activations.reshape((-1, n_outputs_per_class)))
output_probs = output_probs.reshape((batch_size, n_classes, -1))
output_probs = class_probs.dimshuffle(0, 1, 'x') * output_probs
output_probs = output_probs.reshape((batch_size, -1))
# output_probs.shape[1] is n_classes * n_outputs_per_class, which might
# be greater than n_outputs, so we ignore the potential irrelevant
# outputs with the next line:
output_probs = output_probs[:, :n_outputs]
else: # Computes the probabilities of the outputs specified by the targets
target = target.flatten()
# Classes to which belong each target
target_classes = target // n_outputs_per_class
# Outputs to which belong each target inside a class
target_outputs_in_class = target % n_outputs_per_class
# Second softmax that computes the output probabilities
activations = sparse_block_dot(
W2.dimshuffle('x', 0, 1, 2), x.dimshuffle(0, 'x', 1),
tensor.zeros((batch_size, 1), dtype='int32'), b2,
target_classes.dimshuffle(0, 'x'))
output_probs = theano.tensor.nnet.softmax(activations.dimshuffle(0, 2))
target_class_probs = class_probs[tensor.arange(batch_size),
target_classes]
output_probs = output_probs[tensor.arange(batch_size),
target_outputs_in_class]
output_probs = target_class_probs * output_probs
return output_probs
theano sparse_block_dot的更多相关文章
- Deconvolution Using Theano
Transposed Convolution, 也叫Fractional Strided Convolution, 或者流行的(错误)称谓: 反卷积, Deconvolution. 定义请参考tuto ...
- Theano printing
Theano printing To visualize the internal relation graph of theano variables. Installing conda insta ...
- Theano Graph Structure
Graph Structure Graph Definition theano's symbolic mathematical computation, which is composed of: A ...
- Theano Inplace
Theano Inplace inplace Computation computation that destroy their inputs as a side-effect. Example i ...
- broadcasting Theano vs. Numpy
broadcasting Theano vs. Numpy broadcast mechanism allows a scalar may be added to a matrix, a vector ...
- theano scan optimization
selected from Theano Doc Optimizing Scan performance Minimizing Scan Usage performan as much of the ...
- ubuntu系统theano和keras的安装
说明:系统是unbuntu14.04LTS,32位的操作系统,以前安装了python3.4,现在想要安装theano和keras.步骤如下: 1,安装pip sudo apt-get install ...
- theano学习
import numpy import theano.tensor as T from theano import function x = T.dscalar('x') y = T.dscalar( ...
- Theano 学习笔记(一)
Theano 学习笔记(一) theano 为什么要定义共享变量? 定义共享变量的原因在于GPU的使用,如果不定义共享的话,那么当GPU调用这些变量时,遇到一次就要调用一次,这样就会花费大量时间在数据 ...
随机推荐
- Java Web之网上购物系统(注册、登录、浏览商品、添加购物车)
眼看就要期末了,我的专业课也迎来了第二次的期末作业---------<网上购物系统>.虽然老师的意图是在锻炼我们后台的能力,但是想着还是不利用网上的模板,准备自己写,以来别人写的静态页看不 ...
- 分享一个ReactiveCocoa的很好的教程(快速上手)
这是我看到的比较全而且讲的很好的文章 https://www.raywenderlich.com/62796/reactivecocoa-tutorial-pt1 https://www.raywen ...
- Activity的释放
1.ActivityTwo.finish(); 在你的activity动作完成的时候,或者Activity需要关闭的时候,调用此方法.当你调用此方法的时候,系统只是将最上面的Activity移出了栈, ...
- 设置这些之后,Google突然可以打开了
打开的是:https://www.google.com.hk
- css权威指南--笔记
第1章 css和文档 1,元素:替换元素(img input),非替换元素(大多数span). 2,link:rel(代表关系:stylesheet,候选样式表:alternate styleshee ...
- Ctrl-A全选这点事(C#,WinForm)
所有的文本框,不管单行多行都Ctrl-A全选就好了吧?是啊,很方便.Windows的软件基本都是这样.可为什么我们自己制作的WinForm就默认不是这样呢?谁知道呢,可能是WinForm饱受诟病,要改 ...
- ZooKeeper:第三方客户端 ZKClient
ZKClient ZKClient的设计 ZKClient组件说明 重要的处理流程说明 启动ZKClient 为节点注册Watcher ZooKeeper的变更操作 客户端处理变更 序列化处理 ZKC ...
- java获取日期之间天数的方法
//获取两个日期之间的天数private int daysBetween(Date now, Date returnDate) { Calendar cNow = Calendar.getInstan ...
- Python写各大聊天系统的屏蔽脏话功能原理
Python写各大聊天系统的屏蔽脏话功能原理 突然想到一个视频里面弹幕被和谐的一满屏的*号觉得很有趣,然后就想用python来试试写写看,结果还真玩出了点效果,思路是首先你得有一个脏话存放的仓库好到时 ...
- PB gird类型数据窗口 设置分组、分组小计、合计
今天遇到一个需求,gird表格数据如下: 部门 类型 数据 A 类型1 1 A 类型2 2 B 类型1 3 B 类型2 4 合计 10 实际需要显示的结果为: 部门 ...