theano 中的一个函数 sparse_block_dot;

Function:

for b in range(batch_size):
for j in range(o.shape[1]):
for i in range(h.shape[1]):
o[b, j, :] += numpy.dot(h[b, i], W[iIdx[b, i], oIdx[b, j]])

Image Example

Input Parameter

- W (iBlocks, oBlocks, iSize, oSize) – weight matrix
- h (batch, iWin, iSize) – input from lower layer (sparse)
- inputIdx (batch, iWin) – indexes of the input blocks
- b (oBlocks, oSize) – bias vector
- outputIdx (batch, oWin) – indexes of the output blocks

Return

- dot(W[i, j], h[i]) + b[j] #but b[j] is only added once

- shape: (batch, oWin, oSize)

Applications

used form calculating theano.tensor.nnet.h_softmax;

Codes


def h_softmax(x, batch_size, n_outputs, n_classes, n_outputs_per_class,
W1, b1, W2, b2, target=None):
"Two-level hierarchical softmax." # First softmax that computes the probabilities of belonging to each class
class_probs = theano.tensor.nnet.softmax(tensor.dot(x, W1) + b1) if target is None: # Computes the probabilites of all the outputs # Second softmax that computes the output probabilities
activations = tensor.tensordot(x, W2, (1, 1)) + b2
output_probs = theano.tensor.nnet.softmax(
activations.reshape((-1, n_outputs_per_class)))
output_probs = output_probs.reshape((batch_size, n_classes, -1))
output_probs = class_probs.dimshuffle(0, 1, 'x') * output_probs
output_probs = output_probs.reshape((batch_size, -1))
# output_probs.shape[1] is n_classes * n_outputs_per_class, which might
# be greater than n_outputs, so we ignore the potential irrelevant
# outputs with the next line:
output_probs = output_probs[:, :n_outputs] else: # Computes the probabilities of the outputs specified by the targets target = target.flatten() # Classes to which belong each target
target_classes = target // n_outputs_per_class # Outputs to which belong each target inside a class
target_outputs_in_class = target % n_outputs_per_class # Second softmax that computes the output probabilities
activations = sparse_block_dot(
W2.dimshuffle('x', 0, 1, 2), x.dimshuffle(0, 'x', 1),
tensor.zeros((batch_size, 1), dtype='int32'), b2,
target_classes.dimshuffle(0, 'x')) output_probs = theano.tensor.nnet.softmax(activations.dimshuffle(0, 2))
target_class_probs = class_probs[tensor.arange(batch_size),
target_classes]
output_probs = output_probs[tensor.arange(batch_size),
target_outputs_in_class]
output_probs = target_class_probs * output_probs return output_probs

theano sparse_block_dot的更多相关文章

  1. Deconvolution Using Theano

    Transposed Convolution, 也叫Fractional Strided Convolution, 或者流行的(错误)称谓: 反卷积, Deconvolution. 定义请参考tuto ...

  2. Theano printing

    Theano printing To visualize the internal relation graph of theano variables. Installing conda insta ...

  3. Theano Graph Structure

    Graph Structure Graph Definition theano's symbolic mathematical computation, which is composed of: A ...

  4. Theano Inplace

    Theano Inplace inplace Computation computation that destroy their inputs as a side-effect. Example i ...

  5. broadcasting Theano vs. Numpy

    broadcasting Theano vs. Numpy broadcast mechanism allows a scalar may be added to a matrix, a vector ...

  6. theano scan optimization

    selected from Theano Doc Optimizing Scan performance Minimizing Scan Usage performan as much of the ...

  7. ubuntu系统theano和keras的安装

    说明:系统是unbuntu14.04LTS,32位的操作系统,以前安装了python3.4,现在想要安装theano和keras.步骤如下: 1,安装pip sudo apt-get install ...

  8. theano学习

    import numpy import theano.tensor as T from theano import function x = T.dscalar('x') y = T.dscalar( ...

  9. Theano 学习笔记(一)

    Theano 学习笔记(一) theano 为什么要定义共享变量? 定义共享变量的原因在于GPU的使用,如果不定义共享的话,那么当GPU调用这些变量时,遇到一次就要调用一次,这样就会花费大量时间在数据 ...

随机推荐

  1. 转载--改变ubuntu默认编码为GBK

    在Ubuntu支持中文后(方法见上篇文章),默认是UTF-8编码,而Windows中文版默认是GBK编码.为了一致性,通常要把Ubuntu的默认编码改为GBK.当然你也可以不改,但这会导致我们在两个系 ...

  2. Atitit 《控制论原理与概论attilax总结

    Atitit <控制论原理与概论attilax总结 <控制论> 奠基之作,出自创始人维纳.虽然内容权威,但我认为带有相当强烈的个人色彩,且门槛较高,不适合入门.深入研究控制论必看书籍 ...

  3. SharePoint Designer 2013 连接 Office 365 必需安装2个SP

    第一个: 32位电脑安装链接:http://www.microsoft.com/downloads/details.aspx?FamilyId=278a31eb-0cf9-4b30-a670-9c9d ...

  4. Fragment的生命周期

    Fragment的生命周期: 1. onAttach():Fragment对象跟Activity关联时 2. onCreate():Fragment对象的初始创建时 3. onCreateView() ...

  5. 3D坦克大战游戏源码

    3D坦克大战游戏源码,该游戏是基于xcode 4.3,ios sdk 5.1开发.在xcode4.3.3上完美无报错.兼容ios4.3-ios6.0 ,一款ios平台上难得的3D坦克大战游戏源码,有2 ...

  6. 随机生成长度为len的密码,且包括大写、小写英文字母和数字

    一道华三面试题,随机生成长度为len的密码,且包括大写.小写英文字母和数字,主要Random类的使用,random.nextInt(len)表示生成[0,len)整数.具体实现见下面代码,已经很详细了 ...

  7. PHP严重致命错误处理:php Fatal error: Cannot redeclare class or function

    1.错误类型:PHP致命错误 Error type: PHP Fatal error Fatal error: Cannot redeclare (a) (previously declared in ...

  8. 字符串编辑距离(Levenshtein距离)算法

    基本介绍 Levenshtein距离是一种计算两个字符串间的差异程度的字符串度量(string metric).我们可以认为Levenshtein距离就是从一个字符串修改到另一个字符串时,其中编辑单个 ...

  9. everything + autohotkey的配合使用

    一,everything是文件搜索神奇,瞬间定位到文件,在众多的文件中找到你需要的文件.(百度下载就好,分32位和64位)   二,autohotkey是热键启动设置,方便的打开常用的应用. 直接使用 ...

  10. 极路由2(极贰)在OpenWrt下定制自己的ss服务

    默认刷入的OpenWrt带的ss, 只有ss-redir服务, 但是在实际使用中, 很多时候还是希望访问直接通过正常网关, 只有少部分访问需要通过ss, 所以希望能配置成为ss-local服务. 在保 ...