题意:

给出一棵树。设\(E\)表示边集,\(V\)表示点集,\(S\)为\(V\)的一个子集。

\(f(S)=|(u,v)|(u,v)\in E \ \&\&\ u\in V\ \&\&\ v\in V\)。

求\(\displaystyle \sum_{S\subseteq V}f(S)^k\)对\(998244353\)取模的结果。

$n\leq100000,k\leq 10 $。

\

还是对二项式定理不是很熟悉啊。

处理这类和的\(k\)次方问题经常用到二项式定理。

\[\displaystyle (a+b)^k=\sum_{i=0}^k\binom{k}{i}a^ib^{k-i}
\]

于是对于每个\(i\in [0,k]\),我们都维护\(f_{v,i}\)表示\(v\)的子树中\(\displaystyle \sum_{S\subseteq T}f(S)^i\)。

转移的时候就\(k^2\)转移就行了。

特别地,我们让\(0^0=1\),方便转移。

当然也可以用斯特林数

\[\displaystyle
n^m=\sum_{i=0}^m\begin{Bmatrix}m\\i\end{Bmatrix}\binom{n}{i}i!
\]

我们有组合恒等式

\[\displaystyle
\binom{a+b}{k}=\sum_{i=0}^k\binom{a}{i}\binom{b}{k-i}
\]

然后就可以同样的\(k^2\)。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 100005 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} const ll mod=998244353;
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
}
int n,m,k;
struct road {
int to,nxt;
}s[N<<1];
int h[N],cnt;
void add(int i,int j) {s[++cnt]=(road) {j,h[i]};h[i]=cnt;} ll f[N][2][15];
ll g[2][15],H[2][15];
ll c[15][15]; void dfs(int v,int fr) {
f[v][0][0]=f[v][1][0]=1;
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fr) continue ;
dfs(to,v);
memset(g,0,sizeof(g));
for(int j=0;j<=k;j++) {
for(int q=0;q<=k-j;q++) {
(g[0][j+q]+=c[j+q][j]*f[v][0][j]%mod*(f[to][0][q]+f[to][1][q]))%=mod;
(g[1][j+q]+=c[j+q][j]*f[v][1][j]%mod*f[to][0][q])%=mod;
}
}
memset(H,0,sizeof(H));
for(int j=0;j<=k;j++) {
for(int q=0;q<=k-j;q++) {
(H[1][j+q]+=c[j+q][j]*f[v][1][j]%mod*f[to][1][q])%=mod;
}
}
memcpy(f[v],g,sizeof(g));
for(int j=k;j>=1;j--)
for(int q=0;q<j;q++) (H[1][j]+=c[j][q]*H[1][q])%=mod;
for(int j=0;j<=k;j++) (f[v][1][j]+=H[1][j])%=mod;
}
} int main() {
n=Get(),m=Get(),k=Get();
for(int i=0;i<=k;i++)
for(int j=0;j<=i;j++)
c[i][j]=(!j||i==j)?1:(c[i-1][j-1]+c[i-1][j])%mod;
int a,b;
for(int i=1;i<=m;i++) {
a=Get(),b=Get();
add(a,b),add(b,a);
}
dfs(1,0);
cout<<(f[1][0][k]+f[1][1][k])%mod;
return 0;
}

【gdoi2018 day2】第二题 滑稽子图的更多相关文章

  1. 【gdoi2018 day2】第二题 滑稽子图(subgraph)(性质DP+多项式)

    题目大意 [gdoi2018 day2]第二题 滑稽子图(subgraph) 给你一颗树\(T\),以及一个常数\(K\),对于\(T\)的点集\(V\)的子集\(S\). 定义\(f(S)\)为点集 ...

  2. 05:统计单词数【NOIP2011复赛普及组第二题】

    05:统计单词数 总时间限制:  1000ms 内存限制:  65536kB 描述 一般的文本编辑器都有查找单词的功能,该功能可以快速定位特定单词在文章中的位置,有的还能统计出特定单词在文章中出现的次 ...

  3. 常见面试第二题之什么是Context

    今天的面试题,也就是我们常见面试题系列的第二题,我们来讲一讲android中的context.我相信大家android开发者一定对于这个context非常熟悉,肯定都有使用过,肯定没有没使用过的.但是 ...

  4. 《学习OpenCV》练习题第五章第二题abc

    代码: #include <stdio.h> #include <opencv/highgui.h> #include <opencv/cv.h> #include ...

  5. 《学习OpenCV》练习题第四章第二题

    #include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...

  6. CSDN挑战编程——《金色十月线上编程比赛第二题:解密》

    金色十月线上编程比赛第二题:解密 题目详情: 小强是一名学生, 同一时候他也是一个黑客. 考试结束后不久.他吃惊的发现自己的高等数学科目竟然挂了,于是他果断入侵了学校教务部站点. 在入侵的过程中.他发 ...

  7. NOIP2005-普及组复赛-第二题-校门外的树

    题目描述 Description 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0 ...

  8. 【LOJ#6066】「2017 山东一轮集训 Day3」第二题(哈希,二分)

    [LOJ#6066]「2017 山东一轮集训 Day3」第二题(哈希,二分) 题面 LOJ 题解 要哈希是很显然的,那么就考虑哈希什么... 要找一个东西可以表示一棵树,所以我们找到了括号序列. 那么 ...

  9. test20181020 B君的第二题

    题意 分析 考场70分 一看就是裸的kmp,直接打上去. #include<cstdlib> #include<cstdio> #include<cmath> #i ...

随机推荐

  1. .NET 中的序列化 & 反序列化

    序列化:将对象的状态信息及类型信息,转换为一种易于传输或存储形式(流,即字节序列)的过程. 下图为序列化过程图示,图片来自微软官方文档: 反序列化:与序列化相反,将流转换为对象的过程. 常用的有二进制 ...

  2. 在Java中进行序列化和反序列化

    对象序列化的目标是将对象保存在磁盘中,或者允许在网络中直接传输对象. 对象序列化允许把内存中的Java对象转换成平台无关的二进制流,从而允许把这种二进制流持久保存在磁盘上或者通过网络将这种二进制流传输 ...

  3. js 函数重载

    简单定义:根据不同参数长度来实现让同一个函数,进行不同处理. function addMethod (obj, name, fun) { let old = obj[name] obj[name] = ...

  4. es6 语法 (map、set和obj 的对比)

    //数据结构对比 增查改删 { //map.set和Object let item = {t:1}; let map = new Map(); let set = new Set(); let obj ...

  5. Django之django模型层一单表操作

    一 ORM简介 MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人 ...

  6. mysql左连接

    举个例子说明: select d.id, d.uid,d.username,d.dateline, d.message,d.replynum, c.picid, c.filename from doi ...

  7. git 入门教程之github 教程

    github 教程 github 是一个基于 git 的代码托管平台,是平时工作学习的好帮手,学会如何用好 github 网站能够帮助我们更好分享代码或者与其他开发人员合作. 注册 github 账号 ...

  8. Linux 中如何避免 rm -rf /*

    Linux 的删除命令中 rm中没有回收站的概念,一旦文件被删除比较难还原.更可怕的是rm -rf /*,连自己都能删 这命令太危险了,弄错了就核爆了,带来的损失的巨大的.比如 Gitlab.com ...

  9. Java中数组定义的三种方式

    方法一: 1.先声明 2.分配空间 3.赋值 public class arr{ public static void main(String[] args){ int[] arr; //先声明 ar ...

  10. Windows服务器防火墙配置规范

    本文属于一篇内部规范文档,整理的初衷是为了规范.统一集团的Windows服务器(仅仅SQL Server数据库服务器)防火墙设置,仅仅供内部其它同事设置Windows防火墙时作为参考的文档资料.如有不 ...