mapreduce实现一个简单的单词计数的功能。

一,准备工作:eclipse 安装hadoop 插件:

下载相关版本的hadoop-eclipse-plugin-2.2.0.jar到eclipse/plugins下。

二,实现:

新建mapreduce project

map 用于分词,reduce计数。

package tank.demo;

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /**
* @author tank
* @date:2015年1月5日 上午10:03:43
* @description:记词器
* @version :0.1
*/ public class WordCount {
public static class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception { Configuration conf = new Configuration();
if (args.length != 2) {
System.err.println("Usage: wordcount ");
System.exit(2);
}
Job job = new Job(conf, "word count");
//主类
job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class);
job.setReducerClass(IntSumReducer.class);
//map输出格式
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//输出格式
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

打包world-count.jar

三,准备输入数据

hadoop fs -mkdir /user/hadoop/input//建好输入目录

//随便写点数据文件

echo hello my hadoop this is my first application>file1

echo hello world my deer my applicaiton >file2

//拷贝到hdfs中

hadoop fs -put file* /user/hadoop/input

hadoop fs -ls /user/hadoop/input //查看

四,运行

上传到集群环境中:

hadoop jar world-count.jar  WordCount input output

截取一段输出如:

15/01/05 11:14:36 INFO mapred.Task: Task:attempt_local1938802295_0001_r_000000_0 is done. And is in the process of committing
15/01/05 11:14:36 INFO mapred.LocalJobRunner:
15/01/05 11:14:36 INFO mapred.Task: Task attempt_local1938802295_0001_r_000000_0 is allowed to commit now
15/01/05 11:14:36 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1938802295_0001_r_000000_0' to hdfs://192.168.183.130:9000/user/hadoop/output/_temporary/0/task_local1938802295_0001_r_000000
15/01/05 11:14:36 INFO mapred.LocalJobRunner: reduce > reduce
15/01/05 11:14:36 INFO mapred.Task: Task 'attempt_local1938802295_0001_r_000000_0' done.
15/01/05 11:14:36 INFO mapreduce.Job: Job job_local1938802295_0001 running in uber mode : false
15/01/05 11:14:36 INFO mapreduce.Job:  map 100% reduce 100%
15/01/05 11:14:36 INFO mapreduce.Job: Job job_local1938802295_0001 completed successfully
15/01/05 11:14:36 INFO mapreduce.Job: Counters: 32
        File System Counters
                FILE: Number of bytes read=17706
                FILE: Number of bytes written=597506
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=205
                HDFS: Number of bytes written=85
                HDFS: Number of read operations=25
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=5
        Map-Reduce Framework
                Map input records=2
                Map output records=14
                Map output bytes=136
                Map output materialized bytes=176
                Input split bytes=232
                Combine input records=0
                Combine output records=0
                Reduce input groups=10
                Reduce shuffle bytes=0
                Reduce input records=14
                Reduce output records=10
                Spilled Records=28
                Shuffled Maps =0
                Failed Shuffles=0
                Merged Map outputs=0
                GC time elapsed (ms)=67
                CPU time spent (ms)=0
                Physical memory (bytes) snapshot=0
                Virtual memory (bytes) snapshot=0
                Total committed heap usage (bytes)=456536064
        File Input Format Counters
                Bytes Read=80
        File Output Format Counters
                Bytes Written=85

查看输出目录下的文件

[hadoop@tank1 ~]$ hadoop fs -cat /user/hadoop/output/part-r-00000
applicaiton     1
application     1
deer    1
first   1
hadoop  1
hello   2
is      1
my      4
this    1
world   1

已经正确统计出单词数量!

hadoop mapreduce 基础实例一记词的更多相关文章

  1. Hadoop 综合揭秘——MapReduce 基础编程(介绍 Combine、Partitioner、WritableComparable、WritableComparator 使用方式)

    前言 本文主要介绍 MapReduce 的原理及开发,讲解如何利用 Combine.Partitioner.WritableComparator等组件对数据进行排序筛选聚合分组的功能.由于文章是针对开 ...

  2. Hadoop学习基础之三:MapReduce

    现在是讨论这个问题的不错的时机,因为最近媒体上到处充斥着新的革命所谓“云计算”的信息.这种模式需要利用大量的(低端)处理器并行工作来解决计算问题.实际上,这建议利用大量的低端处理器来构建数据中心,而不 ...

  3. [Hadoop in Action] 第4章 编写MapReduce基础程序

    基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...

  4. Hadoop MapReduce执行过程实例分析

    1.MapReduce是如何执行任务的?2.Mapper任务是怎样的一个过程?3.Reduce是如何执行任务的?4.键值对是如何编号的?5.实例,如何计算没见最高气温? 分析MapReduce执行过程 ...

  5. hadoop之mapreduce编程实例(系统日志初步清洗过滤处理)

    刚刚开始接触hadoop的时候,总觉得必须要先安装hadoop集群才能开始学习MR编程,其实并不用这样,当然如果你有条件有机器那最好是自己安装配置一个hadoop集群,这样你会更容易理解其工作原理.我 ...

  6. MongoDB:MapReduce基础及实例

    背景 MapReduce是个非常灵活和强大的数据聚合工具.它的好处是可以把一个聚合任务分解为多个小的任务,分配到多服务器上并行处理. MongoDB也提供了MapReduce,当然查询语肯定是Java ...

  7. 【Hadoop离线基础总结】MapReduce增强(下)

    MapReduce增强(下) MapTask运行机制详解以及MapTask的并行度 MapTask运行流程 第一步:读取数据组件InputFormat(默认TextInputFormat)会通过get ...

  8. 【Hadoop离线基础总结】MapReduce增强(上)

    MapReduce增强 MapReduce的分区与reduceTask的数量 概述 MapReduce当中的分区:物以类聚,人以群分.相同key的数据,去往同一个reduce. ReduceTask的 ...

  9. Hadoop(十五)MapReduce程序实例

    一.统计好友对数(去重) 1.1.数据准备 joe, jon joe , kia joe, bob joe ,ali kia, joe kia ,jim kia, dee dee ,kia dee, ...

随机推荐

  1. @EnableWebMvc

    1.启用MVC Java config 或 MVC XML namespace 想要启用MVC Java config,只需要将@EnableWebMvc添加到你的一个@Configuration c ...

  2. BZOJ2829信用卡凸包——凸包

    题目描述 输入 输出 样例输入 2 6.0 2.0 0.0 0.0 0.0 0.0 2.0 -2.0 1.5707963268 样例输出 21.66 提示 本样例中的2张信用卡的轮廓在上图中用实线标出 ...

  3. Matplotlib学习---用matplotlib画阶梯图(step plot)

    这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://datasets.flowingdata.com/us-postage.c ...

  4. django.db.utils.DataError: (1406, "Data too long for column 'gender' at row 1")

    报错现象 在使用 django 创建 超级用户的时候提示报错 Password (again): ytyt521521 Traceback (most recent call last): File ...

  5. project 2013 任务显示编号

    1. 方法 格式-->大纲数字勾起来即可 2.结果

  6. 爬虫_淘宝(selenium)

    总体来说代码还不是太完美 实现了js渲染网页的解析的一种思路 主要是这个下拉操作,不能一下拉到底,数据是在中间加载进来的, 具体过程都有写注释 from selenium import webdriv ...

  7. 对比cp和scp命令 将数据从一台linux服务器复制到另一台linux服务器

    cp命令用来将一个或多个源文件或者目录复制到指定的目的文件或目录.它可以将单个源文件复制成一个指定文件名的具体的文件或一个已经存在的目录下.cp命令还支持同时复制多个文件,当一次复制多个文件时,目标文 ...

  8. Hdoj 1159.Common Subsequence 题解

    Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...

  9. Dynamic CRM 2015学习笔记(1)Azure 上安装 CRM 2015

    今天终于在Azure上安装成功了CRM 2015,下面简单介绍下安装过程,以及出现问题的解决: 一. 配置AD, 安装IIS 参考下面的link,里面有详细的配置步骤 http://www.c-sha ...

  10. https搭建实例

    :(用的)https://www.coderecord.cn/lets-encrypt-wildcard-certificates.html :acme.shvim .acme.sh/account. ...