Given inorder and level-order traversals of a Binary Tree, construct the Binary Tree. Following is an example to illustrate the problem.

BinaryTree

Input: Two arrays that represent Inorder and level order traversals of a Binary Tree
in[]    = {4, 8, 10, 12, 14, 20, 22};
level[] = {20, 8, 22, 4, 12, 10, 14};

Output: Construct the tree represented by the two arrays. For the above two arrays, the constructed tree is shown in the diagram.

geeksforgeeks的做法是,每次以in和level数组去构建以level[0]为根结点的树。生成下一次level结点的开销是O(n),所以整个时间复杂度是O(n^2)。

我的做法是:

1. 先计算出所有点的层序号。基于这个规律,如果两个元素在同一层,那么后面的数在中序遍历的顺序中,必然也是处于后面;如果后面的数在中序遍历中处于前面,那么必然是处于下一层。O(n)可以做到,但是需要先对两个数组作索引。

2. 从最后一层开始,每一层的左结点,是在inorder序列中,在它左边的连续序列(该序列必须保证层数比它大)中第一个层数=它的层数+1的数。右结点同理。查找左右结点的开销需要O(n)。

所以最终可以做到$O(n^2)$。

 struct TreeNode {
int val;
TreeNode *left, *right;
TreeNode(int v): val(v), left(NULL), right(NULL) {}
}; void print(TreeNode *root) {
if (root == NULL) {
cout << "NULL ";
} else {
cout << root->val << " ";
print(root->left);
print(root->right);
}
} struct Indices {
int inOrderIndex;
int levelOrderIndex;
int level;
}; int main(int argc, char** argv) {
vector<int> inOrder = {, , , , , , };
vector<int> levelOrder = {, , , , , , }; // build indices
unordered_map<int, Indices> indices;
for (int i = ; i < inOrder.size(); ++i) {
if (indices.count(inOrder[i]) <= ) {
indices[inOrder[i]] = {i, , };
} else {
indices[inOrder[i]].inOrderIndex = i;
}
if (indices.count(levelOrder[i]) <= ) {
indices[levelOrder[i]] = {, i, };
} else {
indices[levelOrder[i]].levelOrderIndex = i;
}
} // get level no. for each number
int level = ;
for (int i = ; i < levelOrder.size(); ++i) {
if (indices[levelOrder[i]].inOrderIndex < indices[levelOrder[i - ]].inOrderIndex) {
++level;
}
indices[levelOrder[i]].level = level;
} unordered_map<int, TreeNode*> nodes;
for (int i = levelOrder.size() - ; i >= ; --i) {
nodes[levelOrder[i]] = new TreeNode(levelOrder[i]);
int index = indices[levelOrder[i]].inOrderIndex;
for (int j = index - ; j >= && indices[inOrder[j]].level > indices[inOrder[index]].level; --j) {
if (indices[inOrder[j]].level == indices[inOrder[index]].level + ) {
nodes[levelOrder[i]]->left = nodes[inOrder[j]];
break;
}
}
for (int j = index + ; j < levelOrder.size() && indices[inOrder[j]].level > indices[inOrder[index]].level; ++j) {
if (indices[inOrder[j]].level == indices[inOrder[index]].level + ) {
nodes[levelOrder[i]]->right = nodes[inOrder[j]];
break;
}
}
}
print(nodes[levelOrder[]]);
cout << endl;
return ;
}

Construct a tree from Inorder and Level order traversals的更多相关文章

  1. Leetcode, construct binary tree from inorder and post order traversal

    Sept. 13, 2015 Spent more than a few hours to work on the leetcode problem, and my favorite blogs ab ...

  2. LeetCode: Construct Binary Tree from Inorder and Postorder Traversal 解题报告

    Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...

  3. Construct Binary Tree from Inorder and Postorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...

  4. 36. Construct Binary Tree from Inorder and Postorder Traversal && Construct Binary Tree from Preorder and Inorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal OJ: https://oj.leetcode.com/problems/cons ...

  5. LeetCode:Construct Binary Tree from Inorder and Postorder Traversal,Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode:Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder trav ...

  6. 【题解二连发】Construct Binary Tree from Inorder and Postorder Traversal & Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode 原题链接 Construct Binary Tree from Inorder and Postorder Traversal - LeetCode Construct Binary ...

  7. 【LeetCode】106. Construct Binary Tree from Inorder and Postorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...

  8. [Leetcode Week14]Construct Binary Tree from Inorder and Postorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/pr ...

  9. Leetcode | Construct Binary Tree from Inorder and (Preorder or Postorder) Traversal

    Construct Binary Tree from Preorder and Inorder Traversal Given preorder and inorder traversal of a ...

随机推荐

  1. node.js整理 05进程管理

    简介 NodeJS可以感知和控制自身进程的运行环境和状态,也可以创建子进程并与其协同工作,这使得NodeJS可以把多个程序组合在一起共同完成某项工作,并在其中充当胶水和调度器的作用 常用API Pro ...

  2. 个人js类库mycool

    // JavaScript Document Sunbye 1.0 //getElementById //function start var $=function(_id){return docum ...

  3. 餐厅app总结

    2.总结:在这几个月来说,我们发现我们能力有点不足,整一个app,没有我们想象的那么完美,所以经过我们的讨论说,我们还是需要去加强一下每一个人的能力,但是整个作业,每个人都是尽了每个人的能力. (1) ...

  4. LCS POJ 1458 Common Subsequence

    题目传送门 题意:输出两字符串的最长公共子序列长度 分析:LCS(Longest Common Subsequence)裸题.状态转移方程:dp[i+1][j+1] = dp[i][j] + 1; ( ...

  5. iOS instancetype or id ?

    The id type simply says a method will return a reference to an object. It could be any object of any ...

  6. Storm TimeCacheMap RotatingMap源码分析

    TimeCacheMap是Twitter Storm里面一个类, Storm使用它来保存那些最近活跃的对象,并且可以自动删除那些已经过期的对象. 不过在storm0.8之后TimeCacheMap被弃 ...

  7. 前端构建之gulp与常用插件

    gulp是什么? http://gulpjs.com/ 相信你会明白的! 与著名的构建工具grunt相比,有什么优势呢? 易于使用,代码优于配置 高效,不会产生过多的中间文件,减少I/O压力 易于学习 ...

  8. 洛谷 P1372 又是毕业季I Label:None

    题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...

  9. JS实现屏蔽键盘操作

    第一种:当页面初始加载的时候,屏蔽掉当前页面所有的键盘 $(document).ready(function () { document.body.onkeydown = function (even ...

  10. 【JAVA基础】 MAP 遍历

    public static void main(String[] args) { Map<String, String> map = new HashMap<String, Stri ...