Construct a tree from Inorder and Level order traversals
Given inorder and level-order traversals of a Binary Tree, construct the Binary Tree. Following is an example to illustrate the problem.
BinaryTree
Input: Two arrays that represent Inorder and level order traversals of a Binary Tree
in[] = {4, 8, 10, 12, 14, 20, 22};
level[] = {20, 8, 22, 4, 12, 10, 14};
Output: Construct the tree represented by the two arrays. For the above two arrays, the constructed tree is shown in the diagram.
geeksforgeeks的做法是,每次以in和level数组去构建以level[0]为根结点的树。生成下一次level结点的开销是O(n),所以整个时间复杂度是O(n^2)。
我的做法是:
1. 先计算出所有点的层序号。基于这个规律,如果两个元素在同一层,那么后面的数在中序遍历的顺序中,必然也是处于后面;如果后面的数在中序遍历中处于前面,那么必然是处于下一层。O(n)可以做到,但是需要先对两个数组作索引。
2. 从最后一层开始,每一层的左结点,是在inorder序列中,在它左边的连续序列(该序列必须保证层数比它大)中第一个层数=它的层数+1的数。右结点同理。查找左右结点的开销需要O(n)。
所以最终可以做到$O(n^2)$。
struct TreeNode {
int val;
TreeNode *left, *right;
TreeNode(int v): val(v), left(NULL), right(NULL) {}
}; void print(TreeNode *root) {
if (root == NULL) {
cout << "NULL ";
} else {
cout << root->val << " ";
print(root->left);
print(root->right);
}
} struct Indices {
int inOrderIndex;
int levelOrderIndex;
int level;
}; int main(int argc, char** argv) {
vector<int> inOrder = {, , , , , , };
vector<int> levelOrder = {, , , , , , }; // build indices
unordered_map<int, Indices> indices;
for (int i = ; i < inOrder.size(); ++i) {
if (indices.count(inOrder[i]) <= ) {
indices[inOrder[i]] = {i, , };
} else {
indices[inOrder[i]].inOrderIndex = i;
}
if (indices.count(levelOrder[i]) <= ) {
indices[levelOrder[i]] = {, i, };
} else {
indices[levelOrder[i]].levelOrderIndex = i;
}
} // get level no. for each number
int level = ;
for (int i = ; i < levelOrder.size(); ++i) {
if (indices[levelOrder[i]].inOrderIndex < indices[levelOrder[i - ]].inOrderIndex) {
++level;
}
indices[levelOrder[i]].level = level;
} unordered_map<int, TreeNode*> nodes;
for (int i = levelOrder.size() - ; i >= ; --i) {
nodes[levelOrder[i]] = new TreeNode(levelOrder[i]);
int index = indices[levelOrder[i]].inOrderIndex;
for (int j = index - ; j >= && indices[inOrder[j]].level > indices[inOrder[index]].level; --j) {
if (indices[inOrder[j]].level == indices[inOrder[index]].level + ) {
nodes[levelOrder[i]]->left = nodes[inOrder[j]];
break;
}
}
for (int j = index + ; j < levelOrder.size() && indices[inOrder[j]].level > indices[inOrder[index]].level; ++j) {
if (indices[inOrder[j]].level == indices[inOrder[index]].level + ) {
nodes[levelOrder[i]]->right = nodes[inOrder[j]];
break;
}
}
}
print(nodes[levelOrder[]]);
cout << endl;
return ;
}
Construct a tree from Inorder and Level order traversals的更多相关文章
- Leetcode, construct binary tree from inorder and post order traversal
Sept. 13, 2015 Spent more than a few hours to work on the leetcode problem, and my favorite blogs ab ...
- LeetCode: Construct Binary Tree from Inorder and Postorder Traversal 解题报告
Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...
- Construct Binary Tree from Inorder and Postorder Traversal
Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...
- 36. Construct Binary Tree from Inorder and Postorder Traversal && Construct Binary Tree from Preorder and Inorder Traversal
Construct Binary Tree from Inorder and Postorder Traversal OJ: https://oj.leetcode.com/problems/cons ...
- LeetCode:Construct Binary Tree from Inorder and Postorder Traversal,Construct Binary Tree from Preorder and Inorder Traversal
LeetCode:Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder trav ...
- 【题解二连发】Construct Binary Tree from Inorder and Postorder Traversal & Construct Binary Tree from Preorder and Inorder Traversal
LeetCode 原题链接 Construct Binary Tree from Inorder and Postorder Traversal - LeetCode Construct Binary ...
- 【LeetCode】106. Construct Binary Tree from Inorder and Postorder Traversal
Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...
- [Leetcode Week14]Construct Binary Tree from Inorder and Postorder Traversal
Construct Binary Tree from Inorder and Postorder Traversal 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/pr ...
- Leetcode | Construct Binary Tree from Inorder and (Preorder or Postorder) Traversal
Construct Binary Tree from Preorder and Inorder Traversal Given preorder and inorder traversal of a ...
随机推荐
- (转)qsort和sort
1.qsort函数: 原 型: void qsort(void *base, int nelem, int width, int (*fcmp)(const void *,const void *)) ...
- event 内存泄漏
组长说用event有内存泄漏的隐患..做个测试. 预留
- http://blog.csdn.net/chenleixing/article/details/43740759
http://blog.csdn.net/chenleixing/article/details/43740759
- HBase Shell 常见操作
1.一般操作 status 查看状态 version 查看HBase版本 2.DDL操作 create 'member','member_id','address','info' 创建了一个membe ...
- Target:IG
https://www.zhihu.com/question/25525630 别人轻轻松松红名,我拼死挣扎才1700+分. 仔细想想,虽然我在这东西上花了太多的精力,可是我根本没有认真学.做题全靠抄 ...
- UVa 11082 & 最大流的行列模型
题意: 给出一个矩阵前i行的和与前j列的和,(i∈[1,r],j属于[1,c]),每个元素ai,j∈[1,20],请你还原出这个矩阵,保证有解. SOL: 给网络流建模跪了,神一样的建图,如果我我会怎 ...
- CUDA程序设计(三)
算法设计:基数排序 CUDA程序里应当尽量避免递归,因而在迭代排序算法里,基数排序通常作为首选. 1.1 串行算法实现 十进制位的基数排序需要考虑数位对齐问题,比较麻烦.通常实现的是二进制位的基数排序 ...
- bzoj3083 遥远的国度 题解
题目大意: 给定一棵有根树,每个点有一个权值,提供三种操作: 1.将x节点变为根节点 2.将x到y路径上的点的权值全部改为v 3.询问x的子树中点权的最小值 思路: 用DFS序剖分,记录每个节点入栈出 ...
- Human and AI's future (reverie)
However, I do notice that to make the dark situation happen, it doesn't require the topleft matrix t ...
- CentOS 命令【备忘】
1.查看物理cpu个数 grep 'physical id' /proc/cpuinfo | sort -u | wc -l 2.查看核心数量 grep 'core id' /proc/cpuinfo ...