[问题2014S14]  解答

首先, 满足条件的 \(\varphi\) 的全体特征值都为零. 事实上, 任取 \(\varphi\) 的特征值 \(\lambda\), 对应的特征向量为 \(0\neq\xi\in V\), 即 \(\varphi(\xi)=\lambda\xi\), 则由假设可得 \[0=(\varphi(\xi),\xi)=(\lambda\xi,\xi)=\lambda(\xi,\xi),\] 因为 \(\xi\neq 0\), 故 \((\xi,\xi)>0\), 从而 \(\lambda=0\).

我们用反证法来证明结论. 若 \(\varphi\neq 0\), 则 \(\varphi\) 的 Jordan 标准型中至少有一个 Jordan 块的阶数大于 1, 不妨设为 \(J_m(0),\,m\geq 2\). 设这个 Jordan 块对应的基向量为 \(e_1,e_2,\cdots,e_m\), 则有 \[\varphi(e_1)=0,\,\,\varphi(e_2)=e_1,\,\,\cdots.\] 由 \((\varphi(e_2),e_2)=0\) 可得 \((e_1,e_2)=0\). 由此可得 \[0=(\varphi(e_1+e_2),e_1+e_2)=(e_1,e_1+e_2)=(e_1,e_1)>0,\] 引出矛盾.  \(\Box\)

[问题2014S14] 解答的更多相关文章

  1. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  2. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  3. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  4. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  5. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  6. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  7. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  8. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  9. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

随机推荐

  1. Web前端开发基础 第四课(CSS文字和段落排版)

    文字排版--字体 我们可以使用css样式为网页中的文字设置字体.字号.颜色等样式属性.下面我们来看一个例子,下面代码实现:为网页中的文字设置字体为宋体. body{font-family:" ...

  2. Windows Server 2003修改远程桌面最大连接数的方法

    Windows Server 2003远程桌面允许的终端连接数默认情况下只有2个线程,也就是2个用户,当我们需要多人同时登录服务器的时候,就需要适当增加远程连接同时在线的用户数. 修改远程桌面最大连接 ...

  3. Matlab里面的SVM

    支持向量机是建立在统计学习理论基础之上的新一代机器学习算法,支持向量机的优势主要体现在解决线性不可分问题,它通过引入核函数,巧妙地解决了在高维空间中的内积运算,从而很好地解决了非线性分类问题. 构造出 ...

  4. Go-Agent原理分析及FQ介绍

    作为一个程序员,相信大家是极度依赖google/stackoverflow/github的,可是国内有强大的GFW存在,以至于编程少了很多乐趣. 最近闹GFW狂潮,很多Chrome插件被封,连Shad ...

  5. apache查看工作模式及调优

    一,查看工作模式 /usr/sbin/httpd -l Compiled in modules:  core.c  prefork.c  http_core.c  mod_so.c 如果出现prefo ...

  6. Different Approaches for MVCC

    https://www.enterprisedb.com/well-known-databases-use-different-approaches-mvcc Well-known Databases ...

  7. Nest查询示例

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  8. 解决Tomcat无法shutdown进程

    转自:http://my.oschina.net/yongyi/blog/405198 问题分析 这个在windows下没有碰到过,因为此前跑Tomcat都是以服务而不是命令脚本的形式跑的,而且已经换 ...

  9. oracle: tochar(sysdate,'D')函数

    学习oracle时碰到tochar(sysdate,'D')函数,但是发现并不是星期几,如今天是20150317,周二,但是得到的值为3 开始以为是系统日期什么的原因,试了试 select to_ch ...

  10. OceanBase架构(二)

    http://www.cnblogs.com/LiJianBlog/p/4779990.html OceanBase架构浅析(二)   单点性能 OceanBase架构的优势在于既支持跨行跨表事务,又 ...