POJ 2739 Sum of Consecutive Prime Numbers

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

 

Description

Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 
Your mission is to write a program that reports the number of representations for the given positive integer.

Input

The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

Output

The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

Sample Input

2
3
17
41
20
666
12
53
0

Sample Output

1
1
2
3
0
0
1
2
/*/
题意:
求连续素数和.
有多少种方法可以选取连续的素数,使这些数的和正好为n 思路:
1到10000的素数表打出来,然后直接尺取就可以了,很简单的一道题目。
/*/
#include"map"
#include"cmath"
#include"string"
#include"cstdio"
#include"vector"
#include"cstring"
#include"iostream"
#include"algorithm"
using namespace std;
typedef long long LL;
const int MX=1000005;
#define memset(x,y) memset(x,y,sizeof(x))
#define FK(x) cout<<"【"<<x<<"】"<<endl int vis[MX];
int prim[MX];
int ans[MX];
int main() {
int n,len=0,sum=0;
for(int i=2; i<=100; i++)
if(!vis[i])
for(int j=2; j<=10000; j++)
vis[j*i]=1;
for(int i=2; i<=10000; i++)
if(vis[i]==0) {
len++;
prim[len]=i;
}
for(int i=1; i<=len; i++) {
sum=0;
int j=i;
while(sum<=10000 && j<=1229) {
sum+=prim[j];
if(sum>10000)
break;
ans[sum]++;
j++;
}
}
while(~scanf("%d",&n)) {
if(!n)break;
printf("%d\n",ans[n]);
}
return 0;
}

  

ACM:POJ 2739 Sum of Consecutive Prime Numbers-素数打表-尺取法的更多相关文章

  1. POJ 2739 Sum of Consecutive Prime Numbers(素数)

    POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...

  2. poj 2739 Sum of Consecutive Prime Numbers 素数 读题 难度:0

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19697 ...

  3. POJ.2739 Sum of Consecutive Prime Numbers(水)

    POJ.2739 Sum of Consecutive Prime Numbers(水) 代码总览 #include <cstdio> #include <cstring> # ...

  4. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  5. POJ 2739 Sum of Consecutive Prime Numbers(尺取法)

    题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS     Memory Limit: 65536K Description S ...

  6. POJ 2739 Sum of Consecutive Prime Numbers( *【素数存表】+暴力枚举 )

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19895 ...

  7. POJ 2739 Sum of Consecutive Prime Numbers【素数打表】

    解题思路:给定一个数,判定它由几个连续的素数构成,输出这样的种数 用的筛法素数打表 Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memo ...

  8. poj 2739 Sum of Consecutive Prime Numbers 小结

     Description Some positive integers can be represented by a sum of one or more consecutive prime num ...

  9. poj 2739 Sum of Consecutive Prime Numbers 尺取法

    Time Limit: 1000MS   Memory Limit: 65536K Description Some positive integers can be represented by a ...

随机推荐

  1. Nginx反向代理设置 从80端口转向其他端口

    [root@localhost bin]# netstat -lnutp Active Internet connections (only servers) Proto Recv-Q Send-Q ...

  2. .net学习笔记---xml序列化

    XML序列化是将对象的公共属性和字段转换为XML格式,以便存储或传输的过程.反序列化则是从XML输出中重新创建原始状态的对象.XML序列化中最主要的类是XmlSerializer类.它的最重要的方法是 ...

  3. EF – 8.多对多关联

    5.6.10 <多对多关联(上)> 时长:9分57秒 难度:难 5.6.11<多对多关联(下)> 时长:8分50秒 难度:难 如果单独地把多对多关联的CRUD拿出来讲,确实比较 ...

  4. Oracle锁定和解锁用户的命令

    转:http://database.51cto.com/art/200910/158576.htm 在DBA的日常工作中,经常遇到为Oracle用户解锁的操作:这篇文章给出在命令行下进行Oracle用 ...

  5. Swipe to back not working滑动后退功能消失?

    如果你发现滑动后退功能突然失效了,很可能是因为你隐藏了NavigationBar 或者定制了 leftBarButtonItem(s) 这会导致 NavigationController 的 inte ...

  6. Microsoft SQL Server 博客目录

    基础概念篇 SQL Server排序规则 SQL SERVER 统计信息概述(Statistics) SQL SERVER 索引之聚集索引和非聚集索引的描述 Sql Server 索引之唯一索引和筛选 ...

  7. Go1.7改善了编译速度并且会生成更快的代码

    Go1.7的开发周期正在接近它的下一个里程碑,Go的提交者Dave Cheney报告了子即将发布的版本中,团队成员在语言工具链上的努力. Cheney称,基于当前的开发状态,Go1.7将会很容易就成为 ...

  8. WebRTC之带宽控制部分学习(1) ------基本demo的介绍

    转自:http://blog.csdn.net/u013160228/article/details/46392037 WebRTC的代码真是非常之大啊,下载以及编译了我好几天才搞完..... 可以看 ...

  9. 第三篇:用SOUI能做什么?

    SOUI-DEMO界面预览 在回答SOUI能做什么之前,先看看SVN中demo工程的界面截图: 使用SOUI实现上面的界面主要的工作全在配置几个XML文件,基本不需要写C++代码.(如何配置XML布局 ...

  10. mybatis 中#和$的区别

    #{…}是一个参数标记,将传入的数据都当成一个字符串,会对自动传入的数据加一个双引号.如:order by #user_id#,如果传入的值是1,那么解析成sql时的值为order by " ...