POJ 2739 Sum of Consecutive Prime Numbers

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

 

Description

Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 
Your mission is to write a program that reports the number of representations for the given positive integer.

Input

The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

Output

The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

Sample Input

2
3
17
41
20
666
12
53
0

Sample Output

1
1
2
3
0
0
1
2
/*/
题意:
求连续素数和.
有多少种方法可以选取连续的素数,使这些数的和正好为n 思路:
1到10000的素数表打出来,然后直接尺取就可以了,很简单的一道题目。
/*/
#include"map"
#include"cmath"
#include"string"
#include"cstdio"
#include"vector"
#include"cstring"
#include"iostream"
#include"algorithm"
using namespace std;
typedef long long LL;
const int MX=1000005;
#define memset(x,y) memset(x,y,sizeof(x))
#define FK(x) cout<<"【"<<x<<"】"<<endl int vis[MX];
int prim[MX];
int ans[MX];
int main() {
int n,len=0,sum=0;
for(int i=2; i<=100; i++)
if(!vis[i])
for(int j=2; j<=10000; j++)
vis[j*i]=1;
for(int i=2; i<=10000; i++)
if(vis[i]==0) {
len++;
prim[len]=i;
}
for(int i=1; i<=len; i++) {
sum=0;
int j=i;
while(sum<=10000 && j<=1229) {
sum+=prim[j];
if(sum>10000)
break;
ans[sum]++;
j++;
}
}
while(~scanf("%d",&n)) {
if(!n)break;
printf("%d\n",ans[n]);
}
return 0;
}

  

ACM:POJ 2739 Sum of Consecutive Prime Numbers-素数打表-尺取法的更多相关文章

  1. POJ 2739 Sum of Consecutive Prime Numbers(素数)

    POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...

  2. poj 2739 Sum of Consecutive Prime Numbers 素数 读题 难度:0

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19697 ...

  3. POJ.2739 Sum of Consecutive Prime Numbers(水)

    POJ.2739 Sum of Consecutive Prime Numbers(水) 代码总览 #include <cstdio> #include <cstring> # ...

  4. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  5. POJ 2739 Sum of Consecutive Prime Numbers(尺取法)

    题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS     Memory Limit: 65536K Description S ...

  6. POJ 2739 Sum of Consecutive Prime Numbers( *【素数存表】+暴力枚举 )

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19895 ...

  7. POJ 2739 Sum of Consecutive Prime Numbers【素数打表】

    解题思路:给定一个数,判定它由几个连续的素数构成,输出这样的种数 用的筛法素数打表 Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memo ...

  8. poj 2739 Sum of Consecutive Prime Numbers 小结

     Description Some positive integers can be represented by a sum of one or more consecutive prime num ...

  9. poj 2739 Sum of Consecutive Prime Numbers 尺取法

    Time Limit: 1000MS   Memory Limit: 65536K Description Some positive integers can be represented by a ...

随机推荐

  1. 设计模式学习之组合模式(Composite,结构型模式)(10)

    转载地址:http://www.cnblogs.com/zhili/p/CompositePattern.html 一.引言 在软件开发过程中,我们经常会遇到处理简单对象和复合对象的情况,例如对操作系 ...

  2. Delphi之DLL知识学习1---什么是DLL

    DLL(动态链接库)是程序模块,它包括代码.数据或资源,能够被其他的Windows 应用程序共享.DLL的主要特点之一是应用程序可以在运行时调入代码执行,而不是在编译时链接代码,因此,多个应用程序可以 ...

  3. 数据库递归查询-CTE

    1.公用表表达式(CTE)的定义 公用表达式的定义包含三部分: 公用表表达式的名字(在WITH之后) 所涉及的列名(可选) 一个SELECT语句(紧跟AS之后), 公用表表达式的好处之一是可以在接下来 ...

  4. freemarker 实现对URL的安全编码

    [#setting url_escaping_charset='utf-8'] ${yourstr?url}

  5. 如何在ASP.NET 5中使用ADO.NET

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:ASP.NET 5是一个全新的平台,在这个平台上也带来一些全新的函数库.不过这并非意味 ...

  6. How to install the zsh shell in Linux && how to set it as a default login shell

    Z shell’s (zsh) popularity has increased in the last years. I have not moved too zsh yet, but I am g ...

  7. JSON详解以及可以把javabean转换成json串的json-lib应用

    JSON 1. json是什么 它是js提供的一种数据交换格式! 2. json的语法 {}:是对象! 属性名必须使用双引号括起来!单引不行!!! 属性值:null,数值,字符串,数组:使用[]括起来 ...

  8. BurpSuite的使用总结

    BurpSuite BurpSuite 是一款使用Java编写的,用于Web安全审计与扫描套件.它集成了诸多实用的小工具以完成http请求的转发/修改/扫描等,同时这些小工具之间还可以 互相协作,在B ...

  9. loadrunner资源过滤器

    通过该功能可以实现排除某个资源,很实用 Download Filters功能 帮助在回放脚本的时候对某些特定的访问进行屏蔽,解决页面读取中跨服务器带来数据影响的问题. 过滤规则中有3中策略,即URL. ...

  10. hdu 5692 Snacks 线段树+dfs

    Snacks Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...