详情见代码,回头再填坑。。。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define int long long
#define p 1000000007
using namespace std;
int n,m;
int phi[],su[],pr[],cnt;
void shai()
{
phi[]=;
for(int j=;j<=;j++)
{
if(!phi[j])phi[j]=j-,su[++cnt]=j,pr[j]=j;
for(int i=;su[i]<=pr[j]&&i<=cnt&&su[i]*j<=;i++)
{
pr[su[i]*j]=su[i];
if(!phi[su[i]*j])phi[su[i]*j]=su[i]*j;
if(su[i]==pr[j])phi[su[i]*j]=phi[j]*su[i];
else phi[su[i]*j]=phi[j]*(su[i]-);
}
}
}
signed main()
{
shai();
scanf("%lld%lld",&n,&m);
int ans=;
ans+=n*(n-)*(n-)*m/;ans%=p;
ans+=m*(m-)*(m-)*n/;ans%=p;
int tmp=;
for(int i=;i<=min(n-,m-);i++)tmp=(tmp+m*n%p*phi[i]*((n-)/i)%p*((m-)/i))%p;
for(int i=;i<=min(n-,m-);i++)tmp=(tmp+phi[i]*i%p*i%p*(((n-)/i)*(+(n-)/i)/)%p*(((m-)/i)*(+(m-)/i)/)%p)%p;
for(int i=;i<=min(n-,m-);i++)tmp=(tmp-n*phi[i]%p*i%p*((n-)/i)%p*((((m-)/i)*(+(m-)/i)/)%p)%p+p)%p;
for(int i=;i<=min(n-,m-);i++)tmp=(tmp-m*phi[i]%p*i%p*((m-)/i)%p*((((n-)/i)*(+(n-)/i)/)%p)%p+p)%p;
tmp-=((+n-)*(n-)/)%p*((+m-)*(m-)/)%p;tmp=(tmp+p)%p;
ans=(ans+tmp*)%p;
printf("%lld\n",ans);
return ;
}

bzoj 3518 Dirichlet卷积的更多相关文章

  1. [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛

    Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...

  2. HDU 5628 Clarke and math Dirichlet卷积+快速幂

    题意:bc round 72 中文题面 分析(官方题解): 如果学过Dirichlet卷积的话知道这玩意就是g(n)=(f*1^k)(n), 由于有结合律,所以我们快速幂一下1^k就行了. 当然,强行 ...

  3. 『简单积性函数和dirichlet卷积』

    简单积性函数 在学习欧拉函数的时候,相信读者对积性函数的概念已经有了一定的了解.接下来,我们将相信介绍几种简单的积性函数,以备\(dirichlet\)卷积的运用. 定义 数论函数:在数论上,对于定义 ...

  4. Dirichlet 卷积学习笔记

    Dirichlet 卷积学习笔记 数论函数:数论函数亦称算术函数,一类重要的函数,指定义在正整数集上的实值或复值函数,更一般地,也可把数论函数看做是某一整数集上定义的函数. 然而百科在说什么鬼知道呢, ...

  5. 积性函数与Dirichlet卷积

    转载自https://oi-wiki.org/math/mobius/ 积性函数 定义 若 $gcd(x,y)=1$ 且 $f(xy)=f(x)f(y)$,则 $f(n)$ 为积性函数. 性质 若 $ ...

  6. 【hdu 5628】Clarke and math (Dirichlet卷积)

    hdu 5628 Clarke and math 题意 Given f(i),1≤i≤n, calculate \(\displaystyle g(i) = \sum_{i_1 \mid i} \su ...

  7. BZOJ 3518 点组计数 ——莫比乌斯反演

    要求$ans=\sum_{i=1}^n \sum_{j=1}^m (n-i)(m-j)(gcd(i,j)-1)$ 可以看做枚举矩阵的大小,然后左下右上必须取的方案数. 这是斜率单增的情况 然后大力反演 ...

  8. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  9. BZOJ 2190: [SDOI2008]仪仗队

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2689  Solved: 1713[Submit][Statu ...

随机推荐

  1. linux下sendmail邮件系统安装操作记录

    电子邮件系统的组成:1)邮件用户代理(Mail User Agent , MUA),MUA是一个邮件系统的客户端程序,它提供了阅读,发送和接受电子邮件的用户接口. 最常用的 MUA 有: linux ...

  2. nginx访问白名单设置以及根据$remote_addr分发

    在日常运维工作中,会碰到这样的需求:设置nginx的某个域名访问只对某些ip开放,其他ip的客户端都不能访问.达到这样的目的一般有下面两种设置方法:(1)针对nginx域名配置所启用的端口(一般是80 ...

  3. 针对苹果最新审核要求为应用兼容IPv6

    在WWDC2015上苹果宣布iOS9将支持纯IPv6的网络服务.2016年初开始所有提交到App Store的应用必须支持IPv6.为确保现有的应用是兼容的,我们需要注意下面几点. 不建议使用底层的网 ...

  4. 007商城项目:商品列表查询-需求分析,以及Spinmvc的访问知识

    我们之前已经整合了ssm框架并且调试已经好了,接下来我们实现商品列表的查询. 我们先进入到首页: 方法如下: 我们看到我们把所有的jsp页面都是放在: 这些页面都是放在WEB-IN下面的,也就是说这些 ...

  5. android源码framework下添加新资源的方法

    编译带有资源的jar包,需要更改frameworks层,方法如下: 一.增加png类型的图片资源 1.将appupdate模块所有用到的png格式图片拷贝到framework/base/core/re ...

  6. .net 动态代理的泛型方法支持问题

    最近一直在做.net平台下的高速服务框架.其中有一个问题一直困扰着我:通过动态代理RealProxy创建的服务代理,不支持泛型方法调用.比如: 接口声明: public interface IMete ...

  7. [CF#250 Div.2 D]The Child and Zoo(并查集)

    题目:http://codeforces.com/problemset/problem/437/D 题意:有n个点,m条边的无向图,保证所有点都能互通,n,m<=10^5 每个点都有权值,每条边 ...

  8. 【JavaEE企业应用实战学习记录】struts国际化

    <%-- Created by IntelliJ IDEA. User: Administrator Date: 2016/10/6 Time: 16:26 To change this tem ...

  9. iOS-- 快速集成iOS基于RTMP的视频推流

    效果图 iTools有点卡, 但是推到服务器倒是很快的. 推流 前言 这篇blog是iOS视频直播初窥:<喵播APP>的一个补充. 因为之前传到github上的项目中没有集成视频的推流.有 ...

  10. CSS3自动添加省略号

    text-overflow:ellipsis; white-space:nowrap; overflow:hidden; 不换行,一行显示溢出时,文本自动换行.以前都是js计算的,现在可好. elli ...