详情见代码,回头再填坑。。。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define int long long
#define p 1000000007
using namespace std;
int n,m;
int phi[],su[],pr[],cnt;
void shai()
{
phi[]=;
for(int j=;j<=;j++)
{
if(!phi[j])phi[j]=j-,su[++cnt]=j,pr[j]=j;
for(int i=;su[i]<=pr[j]&&i<=cnt&&su[i]*j<=;i++)
{
pr[su[i]*j]=su[i];
if(!phi[su[i]*j])phi[su[i]*j]=su[i]*j;
if(su[i]==pr[j])phi[su[i]*j]=phi[j]*su[i];
else phi[su[i]*j]=phi[j]*(su[i]-);
}
}
}
signed main()
{
shai();
scanf("%lld%lld",&n,&m);
int ans=;
ans+=n*(n-)*(n-)*m/;ans%=p;
ans+=m*(m-)*(m-)*n/;ans%=p;
int tmp=;
for(int i=;i<=min(n-,m-);i++)tmp=(tmp+m*n%p*phi[i]*((n-)/i)%p*((m-)/i))%p;
for(int i=;i<=min(n-,m-);i++)tmp=(tmp+phi[i]*i%p*i%p*(((n-)/i)*(+(n-)/i)/)%p*(((m-)/i)*(+(m-)/i)/)%p)%p;
for(int i=;i<=min(n-,m-);i++)tmp=(tmp-n*phi[i]%p*i%p*((n-)/i)%p*((((m-)/i)*(+(m-)/i)/)%p)%p+p)%p;
for(int i=;i<=min(n-,m-);i++)tmp=(tmp-m*phi[i]%p*i%p*((m-)/i)%p*((((n-)/i)*(+(n-)/i)/)%p)%p+p)%p;
tmp-=((+n-)*(n-)/)%p*((+m-)*(m-)/)%p;tmp=(tmp+p)%p;
ans=(ans+tmp*)%p;
printf("%lld\n",ans);
return ;
}

bzoj 3518 Dirichlet卷积的更多相关文章

  1. [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛

    Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...

  2. HDU 5628 Clarke and math Dirichlet卷积+快速幂

    题意:bc round 72 中文题面 分析(官方题解): 如果学过Dirichlet卷积的话知道这玩意就是g(n)=(f*1^k)(n), 由于有结合律,所以我们快速幂一下1^k就行了. 当然,强行 ...

  3. 『简单积性函数和dirichlet卷积』

    简单积性函数 在学习欧拉函数的时候,相信读者对积性函数的概念已经有了一定的了解.接下来,我们将相信介绍几种简单的积性函数,以备\(dirichlet\)卷积的运用. 定义 数论函数:在数论上,对于定义 ...

  4. Dirichlet 卷积学习笔记

    Dirichlet 卷积学习笔记 数论函数:数论函数亦称算术函数,一类重要的函数,指定义在正整数集上的实值或复值函数,更一般地,也可把数论函数看做是某一整数集上定义的函数. 然而百科在说什么鬼知道呢, ...

  5. 积性函数与Dirichlet卷积

    转载自https://oi-wiki.org/math/mobius/ 积性函数 定义 若 $gcd(x,y)=1$ 且 $f(xy)=f(x)f(y)$,则 $f(n)$ 为积性函数. 性质 若 $ ...

  6. 【hdu 5628】Clarke and math (Dirichlet卷积)

    hdu 5628 Clarke and math 题意 Given f(i),1≤i≤n, calculate \(\displaystyle g(i) = \sum_{i_1 \mid i} \su ...

  7. BZOJ 3518 点组计数 ——莫比乌斯反演

    要求$ans=\sum_{i=1}^n \sum_{j=1}^m (n-i)(m-j)(gcd(i,j)-1)$ 可以看做枚举矩阵的大小,然后左下右上必须取的方案数. 这是斜率单增的情况 然后大力反演 ...

  8. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  9. BZOJ 2190: [SDOI2008]仪仗队

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2689  Solved: 1713[Submit][Statu ...

随机推荐

  1. ES6 数组解构赋值

    .数组解构 let [a, b, c,d] = ["aa", "bb", 77,88]; alert(a) //弹出aa 可以用babel 解析看ES5的转换结 ...

  2. css中如何设置字体

    来自百度的回答: 建议使用font-family: "Microsoft YaHei";支持UTF-8和GB2312字符集. 不生效的3种情况:1.当此属性定义的是全局样式时,对于 ...

  3. linux磁盘分区-系统安装

    零 系统下载: https://lists.centos.org/pipermail/centos-announce/2016-May/021895.html 往下拉可以看到 一 系统安装 1, 2, ...

  4. HTTP协议详细总结

    HTTP超文本传输协议,是WWW上应用的最多的协议.了解和掌握HTTP协议是对程序人员的基本要求. 转载请注明出处 http://www.cnblogs.com/zrtqsk/p/3746891.ht ...

  5. linux:nohup 不生成 nohup.out的方法

    nohup java -jar /xxx/xxx/xxx.jar >/dev/null 2>&1 & 关键在于最后的 >/dev/null 2>&1 部 ...

  6. 代码滑动panorama-即程序中设置SelectedIndex

    我们都知道panorama的SelectedIndex属性是只读的,所以通过修改它,在程序滑动panorama似乎不可能.那么是不是就没有办法了呢?其实我们可以通过设置SelectedItemProp ...

  7. des解密不完整,前面几位是乱码的解决办法

    在工作中遇到的Des解密问题,第三方发来的数据需要我们进行des解密,但是解密的结果前几位始终是乱码.废了半天劲,终于找到了问题所在. 下面先介绍一下des,了解des的同学可以直接看下面的解决办法. ...

  8. mac下CornerstoneSVN出错 Description : The working copy is locked due to a previous error

    使用CornerStone工具update最新SVN代码报错:The working copy is locked due to a previous error,不仅无法上传,也无法更新,错误提示被 ...

  9. Android之Activity启动模式

    正常模式 每个应用都有一个任务栈,任务栈中保存着已创建的Activity,先创建的Activity先入栈,栈顶是当前正在显示的activity(running),这是正常模式下的Activity的管理 ...

  10. Android开发之Notification通知

    消息通知使我们很常见的,当收到一条消息的时候,通知栏会显示一条通知: 直接看代码: public class MainActivity extends Activity { private Notif ...