Air Raid[HDU1151]
Air Raid
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4974 Accepted Submission(s): 3347
Problem Description
Consider a town where all the streets are one-way and each street leads from one intersection to another. It is also known that starting from an intersection and walking through town's streets you can never reach the same intersection i.e. the town's streets form no cycles.
With these assumptions your task is to write a program that finds the minimum number of paratroopers that can descend on the town and visit all the intersections of this town in such a way that more than one paratrooper visits no intersection. Each paratrooper lands at an intersection and can visit other intersections following the town streets. There are no restrictions about the starting intersection for each paratrooper.
Input
Your program should read sets of data. The first line of the input file contains the number of the data sets. Each data set specifies the structure of a town and has the format:
no_of_intersections
no_of_streets
S1 E1
S2 E2
......
Sno_of_streets Eno_of_streets
The first line of each data set contains a positive integer no_of_intersections (greater than 0 and less or equal to 120), which is the number of intersections in the town. The second line contains a positive integer no_of_streets, which is the number of streets in the town. The next no_of_streets lines, one for each street in the town, are randomly ordered and represent the town's streets. The line corresponding to street k (k <= no_of_streets) consists of two positive integers, separated by one blank: Sk (1 <= Sk <= no_of_intersections) - the number of the intersection that is the start of the street, and Ek (1 <= Ek <= no_of_intersections) - the number of the intersection that is the end of the street. Intersections are represented by integers from 1 to no_of_intersections.
There are no blank lines between consecutive sets of data. Input data are correct.
Output
The result of the program is on standard output. For each input data set the program prints on a single line, starting from the beginning of the line, one integer: the minimum number of paratroopers required to visit all the intersections in the town.
Sample Input
2
4
3
3 4
1 3
2 3
3
3
1 3
1 2
2 3
Sample Output
2
1
最小路径覆盖=点数-最大匹配
最大匹配可以用匈牙利算法来算,也能用最大流来算。
#include <stdio.h>
#include <string.h>
// ALGORITHM_MAXFLOW_SAP -> #define ALGORITHM_MAXFLOW_SAP_MAXN 20010
#define ALGORITHM_MAXFLOW_SAP_MAXM 880010
#define ALGORITHM_MAXFLOW_SAP_INF 0x7FFFFFFF struct ALGORITHM_MAXFLOW_SAP_Node {
int from, to, next;
int cap;
} ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_MAXM];
int ALGORITHM_MAXFLOW_SAP_tol;
int ALGORITHM_MAXFLOW_SAP_head[ALGORITHM_MAXFLOW_SAP_MAXN];
int ALGORITHM_MAXFLOW_SAP_dep[ALGORITHM_MAXFLOW_SAP_MAXN];
int ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_MAXN];
int ALGORITHM_MAXFLOW_SAP_cur[ALGORITHM_MAXFLOW_SAP_MAXN];
int ALGORITHM_MAXFLOW_SAP_S[ALGORITHM_MAXFLOW_SAP_MAXN];
int ALGORITHM_MAXFLOW_SAP_que[ALGORITHM_MAXFLOW_SAP_MAXN];
int ALGORITHM_MAXFLOW_SAP_n; void ALGORITHM_MAXFLOW_SAP_clear() {
ALGORITHM_MAXFLOW_SAP_tol = ;
memset(ALGORITHM_MAXFLOW_SAP_head, -, sizeof(ALGORITHM_MAXFLOW_SAP_head));
} void ALGORITHM_MAXFLOW_SAP_addedge(int u, int v, int w) {
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].from = u;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].to = v;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].cap = w;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].next = ALGORITHM_MAXFLOW_SAP_head[u];
ALGORITHM_MAXFLOW_SAP_head[u] = ALGORITHM_MAXFLOW_SAP_tol++;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].from = v;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].to = u;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].cap = ;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].next = ALGORITHM_MAXFLOW_SAP_head[v];
ALGORITHM_MAXFLOW_SAP_head[v] = ALGORITHM_MAXFLOW_SAP_tol++;
}
void ALGORITHM_MAXFLOW_SAP_BFS(int start, int end) {
memset(ALGORITHM_MAXFLOW_SAP_dep, -, sizeof(ALGORITHM_MAXFLOW_SAP_dep));
memset(ALGORITHM_MAXFLOW_SAP_gap, , sizeof(ALGORITHM_MAXFLOW_SAP_gap));
ALGORITHM_MAXFLOW_SAP_gap[] = ;
int front, rear;
front = rear = ;
ALGORITHM_MAXFLOW_SAP_dep[end] = ;
ALGORITHM_MAXFLOW_SAP_que[rear++] = end;
while(front != rear) {
int u = ALGORITHM_MAXFLOW_SAP_que[front++];
if(front == ALGORITHM_MAXFLOW_SAP_MAXN) {
front = ;
}
for(int i = ALGORITHM_MAXFLOW_SAP_head[u]; i != -; i = ALGORITHM_MAXFLOW_SAP_edge[i].next) {
int v = ALGORITHM_MAXFLOW_SAP_edge[i].to;
if(ALGORITHM_MAXFLOW_SAP_dep[v] != -) {
continue;
}
ALGORITHM_MAXFLOW_SAP_que[rear++] = v;
if(rear == ALGORITHM_MAXFLOW_SAP_MAXN) {
rear = ;
}
ALGORITHM_MAXFLOW_SAP_dep[v] = ALGORITHM_MAXFLOW_SAP_dep[u] + ;
++ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_dep[v]];
}
}
}
int ALGORITHM_MAXFLOW_SAP_SAP(int start, int end) {
int res = ;
ALGORITHM_MAXFLOW_SAP_BFS(start, end);
int top = ;
memcpy(ALGORITHM_MAXFLOW_SAP_cur, ALGORITHM_MAXFLOW_SAP_head, sizeof(ALGORITHM_MAXFLOW_SAP_head));
int u = start;
int i;
while(ALGORITHM_MAXFLOW_SAP_dep[start] < ALGORITHM_MAXFLOW_SAP_n) {
if(u == end) {
int temp = ALGORITHM_MAXFLOW_SAP_INF;
int inser;
for(i = ; i < top; i++)
if(temp > ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[i]].cap) {
temp = ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[i]].cap;
inser = i;
}
for(i = ; i < top; i++) {
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[i]].cap -= temp;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[i] ^ ].cap += temp;
}
res += temp;
top = inser;
u = ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[top]].from;
}
if(u != end && ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_dep[u] - ] == ) {
break;
}
for(i = ALGORITHM_MAXFLOW_SAP_cur[u]; i != -; i = ALGORITHM_MAXFLOW_SAP_edge[i].next)
if(ALGORITHM_MAXFLOW_SAP_edge[i].cap != && ALGORITHM_MAXFLOW_SAP_dep[u] == ALGORITHM_MAXFLOW_SAP_dep[ALGORITHM_MAXFLOW_SAP_edge[i].to] + ) {
break;
}
if(i != -) {
ALGORITHM_MAXFLOW_SAP_cur[u] = i;
ALGORITHM_MAXFLOW_SAP_S[top++] = i;
u = ALGORITHM_MAXFLOW_SAP_edge[i].to;
} else {
int min = ALGORITHM_MAXFLOW_SAP_n;
for(i = ALGORITHM_MAXFLOW_SAP_head[u]; i != -; i = ALGORITHM_MAXFLOW_SAP_edge[i].next) {
if(ALGORITHM_MAXFLOW_SAP_edge[i].cap == ) {
continue;
}
if(min > ALGORITHM_MAXFLOW_SAP_dep[ALGORITHM_MAXFLOW_SAP_edge[i].to]) {
min = ALGORITHM_MAXFLOW_SAP_dep[ALGORITHM_MAXFLOW_SAP_edge[i].to];
ALGORITHM_MAXFLOW_SAP_cur[u] = i;
}
}
--ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_dep[u]];
ALGORITHM_MAXFLOW_SAP_dep[u] = min + ;
++ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_dep[u]];
if(u != start) {
u = ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[--top]].from;
}
}
}
return res;
} // <- ALGORITHM_MAXFLOW_SAP
int main() {
int T;
scanf("%d", &T);
while(T--) {
ALGORITHM_MAXFLOW_SAP_clear();
int n, m, a, b;
scanf("%d%d", &n, &m);
ALGORITHM_MAXFLOW_SAP_n = + * n;
for(int i = ; i <= n + ; i++) {
ALGORITHM_MAXFLOW_SAP_addedge(, i, );;
}
for(int i = n + ; i <= * n + ; i++) {
ALGORITHM_MAXFLOW_SAP_addedge(i, * n + , );
}
for(int i = ; i < m; i++) {
scanf("%d%d", &a, &b);
ALGORITHM_MAXFLOW_SAP_addedge(a + , b + n + , );
}
int x = ALGORITHM_MAXFLOW_SAP_SAP(, * n + );
printf("%d\n", n - x);
}
return ;
}
Air Raid[HDU1151]的更多相关文章
- HDU1151 Air Raid —— 最小路径覆盖
题目链接:https://vjudge.net/problem/HDU-1151 Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory L ...
- hdu1151 二分图(无回路有向图)的最小路径覆盖 Air Raid
欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
- Hdu1151 Air Raid(最小覆盖路径)
Air Raid Problem Description Consider a town where all the streets are one-way and each street leads ...
- HDU1151:Air Raid(最小边覆盖)
Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- 【网络流24题----03】Air Raid最小路径覆盖
Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- hdu-----(1151)Air Raid(最小覆盖路径)
Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- hdu 1151 Air Raid(二分图最小路径覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=1151 Air Raid Time Limit: 1000MS Memory Limit: 10000K To ...
- HDOJ 1151 Air Raid
最小点覆盖 Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- Air Raid(最小路径覆盖)
Air Raid Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7511 Accepted: 4471 Descript ...
随机推荐
- innodb之超时参数配置
可参考:http://www.penglixun.com/tech/database/mysql_timeout.html 下面内容摘取自上面这个链接. connection_timeout,只是设置 ...
- NYOJ题目62笨小熊
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAr4AAAK1CAIAAAChInrhAAAgAElEQVR4nO3dO3LjutaG4X8Szj0Qxx
- CSDN-markdown编辑器
欢迎使用Markdown编辑器写博客 本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接 ...
- gbdt可视化
gbdt的最大优点,和决策树一样,高度可解释,最喜欢的分类模型:) #!/usr/bin/env python #coding=gbk # ============================== ...
- OCJP(1Z0-851) 模拟题分析(四)over
Exam : 1Z0-851 Java Standard Edition 6 Programmer Certified Professional Exam 以下分析全都是我自己分析或者参考网上的,定有 ...
- javascript实用技巧,js小知识
一.js整数的操作 使用|0和~~可以将浮点转成整型且效率方面要比同类的parseInt,Math.round 要快,在处理像素及动画位移等效果的时候会很有用.性能比较见此. var foo = (1 ...
- POJ3415 Common Substrings(后缀数组 单调栈)
借用罗穗骞论文中的讲解: 计算A 的所有后缀和B 的所有后缀之间的最长公共前缀的长度,把最长公共前缀长度不小于k 的部分全部加起来.先将两个字符串连起来,中间用一个没有出现过的字符隔开.按height ...
- Linux/centos下安装riak
必备的组件: gccgcc-c++glibc-develmakepam-devel 使用yum安装相关组件 sudo yum install gcc gcc-c++ glibc-devel make ...
- Java Hour 65 [译] Java 6.0 说明
原文可爱的地址: http://www.javabeat.net/introduction-to-java-6-0-new-features-part-i/ 该文字2007年的,现在估计老掉牙了,但是 ...
- 轻松搞定javascript预解析机制(搞定后,一切有关变态面试题都是浮云~~)
hey,guys!我们一起总结一下JS预解析吧! 首先,我们得搞清楚JS预解析和JS逐行执行的关系.其实它们两并不冲突,一个例子轻松理解它们的关系: 你去酒店吃饭,吃饭前你得看下菜谱,点下菜(JS预解 ...