CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
2 seconds
256 megabytes
standard input
standard output
Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.
For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).
The weight of the spanning tree is the sum of weights of all edges included in spanning tree.
First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.
Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.
Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.
The edges are numbered from 1 to m in order of their appearing in input.
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
9
8
11
8
8
8
9
题意:给出一个图,问每一条边如果要在一个生成树当中,那这个生成树最小是多少。
分析:先找出一个最小生成树。
想像一下,加入一条边,会对这个生成树造成什么影响。
形成了一个环,然后最优情况,肯定要拿掉除他之外最大的一条边。
问题就变成了,在最小生成树上查询两点之间的边的最大值。
/**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define mk make_pair inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = , M = ;
int n, m;
struct EdgeType
{
int u, v, value, index;
LL ans;
inline bool operator <(const EdgeType &t) const
{
return value < t.value;
} inline void Read()
{
u = Getint();
v = Getint();
value = Getint();
}
} edge[N];
int fa[N], favalue[N];
int first[N], to[N * ], value[N * ], next[N * ], tot;
int up[N][M], depth[N], maxcnt[N][M];
LL ans; inline void Input()
{
n = Getint();
m = Getint();
for(int i = ; i <= m; i++)
{
edge[i].Read();
edge[i].index = i;
}
} inline int Find(int x)
{
static int path[N], len;
for(len = ; x != fa[x]; x = fa[x])
path[++len] = x;
for(int i = ; i <= len; i++) fa[path[i]] = x;
return x;
} inline void Insert(int u, int v, int val)
{
tot++;
to[tot] = v, value[tot] = val, next[tot] = first[u];
first[u] = tot;
} inline void Bfs()
{
static int que[N], head, tail;
for(int i = ; i <= n; i++) fa[i] = -;
que[] = , head = tail = , fa[] = , depth[] = ;
while(head <= tail)
{
int u = que[head++];
for(int tab = first[u], v; tab; tab = next[tab])
if(fa[v = to[tab]] == -)
{
fa[v] = u, favalue[v] = value[tab], depth[v] = depth[u] + ;
que[++tail] = v;
}
}
} inline int GetMax(int u, int v)
{
int ret = , level = M;
while(depth[u] != depth[v])
{
if(depth[u] < depth[v]) swap(u, v);
while(level && ( << level) > depth[u] - depth[v]) level--;
ret = max(ret, maxcnt[u][level]);
u = up[u][level];
}
level = M;
while(level && u != v)
{
while(level && ( << level) > depth[u]) level--;
while(level && up[u][level] == up[v][level]) level--;
ret = max(ret, maxcnt[u][level]);
ret = max(ret, maxcnt[v][level]);
u = up[u][level], v = up[v][level];
}
while(u != v)
{
ret = max(ret, favalue[u]);
ret = max(ret, favalue[v]);
u = fa[u], v = fa[v];
}
return ret;
} inline bool CompareByIndex(const EdgeType &a, const EdgeType &b)
{
return a.index < b.index;
} inline void Solve()
{
sort(edge + , edge + + m);
for(int i = ; i <= n; i++) fa[i] = i;
for(int i = ; i <= m; i++)
{
int u = Find(edge[i].u), v = Find(edge[i].v);
if(u != v)
{
Insert(edge[i].u, edge[i].v, edge[i].value);
Insert(edge[i].v, edge[i].u, edge[i].value);
ans += edge[i].value;
fa[u] = v;
}
} Bfs(); for(int i = ; i < M; i++)
{
if(( << i) > n) break;
for(int j = ; j <= n; j++)
if(i == )
{
up[j][i] = fa[j];
maxcnt[j][i] = favalue[j];
}
else
{
up[j][i] = up[up[j][i - ]][i - ];
maxcnt[j][i] = max(maxcnt[j][i - ], maxcnt[up[j][i - ]][i - ]);
}
} for(int i = ; i <= m; i++)
{
int u = edge[i].u, v = edge[i].v;
int ret = GetMax(u, v);
edge[i].ans = ans - ret + edge[i].value;
} sort(edge + , edge + + m, CompareByIndex);
for(int i = ; i <= m; i++) printf("%I64d\n", edge[i].ans);
} int main()
{
freopen("a.in", "r", stdin);
Input();
Solve();
return ;
}
CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge的更多相关文章
- CF Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树变种
题目链接:http://codeforces.com/problemset/problem/609/E 大致就是有一棵树,对于每一条边,询问包含这条边,最小的一个生成树的权值. 做法就是先求一次最小生 ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge (最小生成树+树链剖分)
题目链接:http://codeforces.com/contest/609/problem/E 给你n个点,m条边. 问枚举每条边,问你加这条边的前提下组成生成树的权值最小的树的权值和是多少. 先求 ...
- [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]
这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...
- codeforces 609E Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Codeforces Edu3 E. Minimum spanning tree for each edge
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
随机推荐
- cookie的设置、获取以及删除
首先介绍一下cookie的基本信息: cookie是以域为单位的,它必须放在服务器的的环境下,但是cookie的容量小,只有4kb,并且也不安全,还有入股cookie的名字相同,会修改或者覆盖原来的值 ...
- 实现Asp.Net Mvc4多级Views目录
建立自己MyViewEngine类让他继承RazorViewEngine,之后在构造函数里面写入设置视图位置格式代码如下: public class MyViewEngine : RazorViewE ...
- 大话数据结构–1.基础知识+2.算法
2.算法: 算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每个指令表现为一个或多个操作. 特性:输入.输出.有穷性.确定性.可行性. 2.9.1.算法时间复杂度: 语句 ...
- MVC - 19.Log4net
下载地址:http://pan.baidu.com/s/1gdxQegN 对于网站来讲,我们不能将异常信息显示给用户, Log4Net用来记录日志,可以将程序运行过程中的信息输出到文件,数据库中等 ...
- Filp Game
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 25573 Accepted: 11052 题目链接: ...
- angularjs实战
1.指令 transclude 保留原来的内容 replace 去掉<my-directive>指令 <script src="http://apps.bdimg.com ...
- gnuplot安装问题(set terminal "unknown")
今天在系统同上要装个gnuplot,原来用的都是拷好的虚拟机.这也是第一次装.本来以为分分钟的事,却不料遇到不少麻烦.记录一下,供大家参考 一,快速开始安装 ubuntu下那自然是: sudo apt ...
- PDF解析记录——Pdfbox
此文仅作记录[嫌放电脑里碍事-_-],内容为以前收集的一小段代码. 下面为pdf获取文本的简要代码片段: private string GetPDFText(string filename) { ...
- 第十三篇:在SOUI中使用有窗口句柄的子窗口
前言: 无论一个DirectUI系统提供的DUI控件多么丰富,总会有些情况下用户需要在DUI窗口上放置有窗口句柄的子窗口. 为了和无窗口句柄的子窗口相区别,这里将有窗口句柄的子窗口称之为真窗口. 每一 ...
- PAT A 1014. Waiting in Line (30)【队列模拟】
题目:https://www.patest.cn/contests/pat-a-practise/1014 思路: 直接模拟类的题. 线内的各个窗口各为一个队,线外的为一个,按时间模拟出队.入队. 注 ...