XIII Open Cup named after E.V. Pankratiev. GP of SPb
A. Graph Coloring
答案为$1$很好判,为$2$只需要二分图染色,对于$3$,首先爆搜哪些边要染成第$3$种颜色,然后二分图染色判定即可。
B. Decimal Fraction
枚举前缀,那么只需要求出后面部分的最小循环节即可,将串翻转之后进行KMP,循环节长度$=i-next[i]$。
时间复杂度$O(n)$。
C. Teams of Equal Power
首先将球员按能力值从大到小排序,假设一队的队长能力值比二队队长高,那么显然一队队长只能是第一个人,枚举二队队长,然后看看后面是否存在合法方案即可。
判断合法,可以设$f[i][j]$表示用$[i,n]$这些人能否组成能力值之和为$j$的队伍,可以用bitset加速。
时间复杂度$O(\frac{n^3}{64})$。
D. Hexagon
轮廓线DP,设$f[i][j][S]$表示考虑到$(i,j)$这个三角形,轮廓线上的匹配情况为$S$的方案数,然后打表即可,注意去掉冗余的状态。
E. Maximal Matching
建图:$S$向左边每个点连边,费用为点权,流量为$1$;右边每个点向$T$连边,费用为点权,流量为$1$;左边的点向能匹配的右边的点连边,费用为$0$,流量为$1$,那么答案就是这个图的最大费用流。
注意到与$S$和$T$相连的边费用非负,且中间的边费用都是$0$,第一次增广后,左右那两条边费用取负,中间的$0$权边反向,因为左右两条边与源汇连接,所以以后最长增广路必然不会经过它,可以删除。而对于中间的$0$权边来说,将它们按强连通分量合并后增广路不变,所以可以如此缩成DAG,就可以每次在$O(n+m+e)$的时间内找到增广路。
时间复杂度$O(e(n+m+e))$。
然后不想写,写个裸费用流居然A了。
F. Right Turn Only
按题目要求分类讨论即可。
G. Similar Strings
$O(2^k)$枚举串中哪些位置必须匹配,算出Hash值,相同的Hash值的串之间可以互相更新答案。
时间复杂度$O(2^kn\log n)$。
H. Traffic Lights
留坑。
I. Triple Connections
区间DP,细节很多,留坑。
XIII Open Cup named after E.V. Pankratiev. GP of SPb的更多相关文章
- XIII Open Cup named after E.V. Pankratiev. GP of Ukraine
A. Automaton 后缀自动机可以得到$O(2n+1)$个状态,但是后缀自动机会拒绝接收所有不是$S$的子串的串,所以在建立后缀自动机的时候不复制节点即可得到$n+1$个状态的DFA. #inc ...
- XIII Open Cup named after E.V. Pankratiev. GP of Asia and South Caucasus
A. RPG 首先计算出每个技能对于每个属性值的可行区间,若区间为空则不合法. 枚举两个技能,以及每个属性值,根据区间的关系可以得到哪个必须要在另一个之前学,连边看看是否有环即可. 时间复杂度$O(n ...
- XIII Open Cup named after E.V. Pankratiev. GP of Azov Sea
A. Freestyle 如果逆序对为$0$,那么先手必败. 因为每次只能翻转长度为$4k+2$和$4k+3$的区间,所以每次操作之后逆序对的奇偶性一定会发生改变. 因此如果逆序对个数为偶数,则先手必 ...
- XIII Open Cup named after E.V. Pankratiev. GP of America
A. Explosions 注意到将炸弹按坐标排序后,每个炸弹直接引爆和间接引爆的都是连续的一段区间,因此只需要求出每个炸弹能间接炸到的最左和最右的炸弹即可. 建立图论模型,炸弹$i$向炸弹$j$连单 ...
- XIII Open Cup named after E.V. Pankratiev. GP of Saratov
A. Box Game 注意到局面总数不超过$50000$,而且每次操作都会改变石子的奇偶性,因此按奇偶可以将状态建成二分图,然后求出最大匹配. 如果状态数是偶数,那么先手必胜,策略就是每次走匹配边, ...
- XVII Open Cup named after E.V. Pankratiev. GP of SPb
A. Array Factory 将下标按前缀和排序,然后双指针,维护最大的右边界即可. #include<cstdio> #include<algorithm> using ...
- XVI Open Cup named after E.V. Pankratiev. GP of SPB
A. Bubbles 枚举两个点,求出垂直平分线与$x$轴的交点,答案=交点数+1. 时间复杂度$O(n^2\log n)$. #include<cstdio> #include<a ...
- XIV Open Cup named after E.V. Pankratiev. GP of SPb
A. Bracket Expression 直接按题意模拟即可. 时间复杂度$O(n)$. #include<stdio.h> #include<algorithm> #inc ...
- XVIII Open Cup named after E.V. Pankratiev. GP of SPb
contest Link A. Base i − 1 Notation solved by sdcgvhgj 238 求出a+b的2进制后从低位到高两位两位地转化为i-1进制 i-1进制的第2k位和第 ...
随机推荐
- Android RadioButton selector背景
RadioButton selector 背景 <?xml version="1.0" encoding="utf-8"?> <selecto ...
- 解决passwd 为普通用户设密码 不成功的方法
echo "xxxxxxxxx"|passwd --stdin user_name #这样设置密码就可以成功!
- C#学习笔记-----C#枚举中的位运算权限分配
一.基础知识 什么是位运算? 用二进制来计算,1&2:这就是位运算,其实它是将0001与0010做位预算 得到的结果是 0011,也就是3 2.位预算有多少种?(我们就将几种我们权限中会 ...
- Easy UI 面板
驾考园 http://www.jiakaoyuan.com 驾考园信息网 下载(源码)
- 11g Physical Standby配置
一,准备 Database DB_UNIQUE_NAME Oracle Net Service Name Primary PROD PROD Physical standby PRODDG PRO ...
- wp8 入门到精通 MultiMsgPrompt
List<NotifyMsg> arraymsg = new List<NotifyMsg>(); List<NotifyInfo> ArrayNotifyInfo ...
- VS2012 OpenCV2.4.9 Debug可以允许,Release不可以
一个简单的程序 #include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgu ...
- SGU 275 To xor or not to xor 高斯消元求N个数中选择任意数XORmax
275. To xor or not to xor The sequence of non-negative integers A1, A2, ..., AN is given. You are ...
- uri,url.urn
uri:Web上可用的每种资源 - HTML文档.图像.视频片段.程序等 - 由一个通过通用资源标志符(Universal Resource Identifier, 简称"URI" ...
- c++ shared_ptr 使用注意事项. 2
1.抛弃临时对象,让所有的智能指针都有名字. 2.类向外传递 this 的 shared_ptr 让类继承 enable_shared_from_this. 然后返回 shared_from_ ...