原题地址:https://oj.leetcode.com/problems/pascals-triangle/

题意:

Given numRows, generate the first numRows of Pascal's triangle.

For example, given numRows = 5,
Return

[
[1],
[1,1],
[1,2,1],
[1,3,3,1],
[1,4,6,4,1]
]

解题思路:杨辉三角的求解。

代码:

class Solution:
# @return a list of lists of integers
def generate(self, numRows):
if numRows == 0:
return []
if numRows == 1:
return [[1]]
if numRows == 2:
return [[1], [1, 1]]
if numRows > 2:
list = [[] for i in range(numRows)]
for i in range(0, numRows):
list[i] = [1 for j in range(i + 1)]
for i in range(2, numRows):
for j in range(1, i):
list[i][j] = list[i - 1][j - 1] + list[i - 1][j]
return list

[leetcode]Pascal's Triangle @ Python的更多相关文章

  1. LeetCode:Pascal's Triangle I II

    LeetCode:Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For examp ...

  2. [leetcode]Pascal's Triangle II @ Python

    原题地址:https://oj.leetcode.com/problems/pascals-triangle-ii/ 题意: Given an index k, return the kth row ...

  3. LeetCode Pascal's Triangle && Pascal's Triangle II Python

    Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, given ...

  4. LeetCode——Pascal's Triangle

    Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...

  5. [LeetCode] Pascal's Triangle II 杨辉三角之二

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...

  6. [LeetCode] Pascal's Triangle 杨辉三角

    Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...

  7. 学会从后往前遍历,例 [LeetCode] Pascal's Triangle II,剑指Offer 题4

    当我们需要改变数组的值时,如果从前往后遍历,有时会带来很多麻烦,比如需要插入值,导致数组平移,或者新的值覆盖了旧有的值,但旧有的值依然需要被使用.这种情况下,有时仅仅改变一下数组的遍历方向,就会避免这 ...

  8. LeetCode - Pascal's Triangle II

    题目: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return ...

  9. LeetCode: Pascal's Triangle II 解题报告

    Pascal's Triangle II Total Accepted: 19384 Total Submissions: 63446 My Submissions Question Solution ...

随机推荐

  1. Android-通知栏上的RemoteView

    Android-通知栏上的RemoteView 学习自 <Android开发艺术探索> https://developer.android.google.cn/reference/andr ...

  2. django权限管理

    当我们为应用创建一个Models, 在同步到数据库里,django默认给了三个权限 ,就是 add, change, delete权限. 首先,我们创建一个perm_test的project, 然后再 ...

  3. 牛客网某比赛 I 小乐乐学博弈 博弈论

    题目大意: 有两堆石子\(n\)和\(m\),每次可以拿\(1 \sim k\)个 \(k >= |n - m|\) 问先手必胜? 把限制条件去掉才有意思 首先考虑两堆相等,那么先手怎么操作,后 ...

  4. R基础学习(三)-- 简单练习(shiny+mysql+barplot)

    测试环境:win10+RStudio 提前准备: install.packages('shiny') install.packages('RMySQL') 数据表准备: 最终实现的界面效果如下:点击[ ...

  5. Docker系列之(五):使用Docker Compose编排容器

    1. 前言 Docker Compose 是 Docker 容器进行编排的工具,定义和运行多容器的应用,可以一条命令启动多个容器. 使用Compose 基本上分为三步: Dockerfile 定义应用 ...

  6. What is OpenOCD?

    About OpenOCD was created by Dominic Rath as part of a 2005 diploma thesis written at the University ...

  7. cmsis dap interface firmware

    cmsis dap interface firmware The source code of the mbed HDK (tools + libraries) is available in thi ...

  8. STM32F4 External interrupts

    STM32F4 External interrupts Each STM32F4 device has 23 external interrupt or event sources. They are ...

  9. delphi socket 编程 使用多线程

    http://blog.csdn.net/lailai186/article/details/8788710?utm_source=tuicool TClientSocket和TServerSocke ...

  10. WebLogic使用总结(二)——WebLogic卸载

    一.WebLogic 12c的卸载 WebLogic的卸载是非常容易的,找到WebLogic的卸载程序,如下图所示: 启动卸载程序,如下图所示: