这个函数的作用就是从标准正态分布中返回一个或多个样本值。什么是标准正态分布

来源:http://www.360doc.com/content/17/0306/13/32342759_634411464.shtml

什么是正态分布

正态概率分布是连续型随机变量概率分布中最重要的形式,它在实践中有着广泛的应用。在生活中有许多现象的分布都服从正态分布,如人的身高、体重、智商分数;某种产品的尺寸和质量;降雨量;学习成绩,特别是,在统计推断时,当样本的数量足够大时,许多统计数据都服从正态分布。下面以人的身高为例,通俗解释一下什么是正态分布?

随机抽取200位同等年龄上下的男性,测量好他们的身高之后计算出平均身高,通过将平均身高和他们各自的身高对比,我们可以轻松发现这一现象:大多数男性的身高都集中在平均身高上下浮动,有极少数男性身高很矮,也有极少数男性身高很高。这200为男性身高的概率密度函数可能如下图所示:

实际上,这种形状十分常见,应用很广泛,它叫做正态分布。

正态分布的概率密度函数

正态分布之所以被称为正态,是因为它的形态看起来合乎理性。在现实生活中,遇到测量值之类的大量连续数据时,正常情况下都会期望看到这种形态。正态分布的概率密度函数的计算公式如下:

其中μ=均值,σ=标准差,π=3.14159,e=2.71828。如果随机变量X符合上述概率密度函数的分布,则称X是服从参数为μ,σ2的正态分布,记为X~N(μ,σ2)。

正态分布的概率密度函数具有下列性质;

  1. 以x=μ为对称轴的对称分布;

  2. σ2指分散性,σ2值越大,正态分布的曲线越扁平、越宽;

  3. 以x轴为渐近线;

  4. 若随机变量X1,X2…,Xn皆服从正态分布,且相互独立,则对任意几个常数a1,a2,…,an(不全为0),Z=a1X1+a2x2+……+anXn也服从正态分布。

正态分布求概率

在《每天一点统计学——概率密度函数》中,我们已经知道如何使用概率密度函数求概率的方法。但是在正态分布中求概率是非常困难的,提供包括所有不同的μ和σ的正态分布表也是不可能的。所以统计学家通过一种简单的方法来解决这一问题。对于一个随机变量X~N(μ,σ2),如果令Z=(x-μ)/σ(标准分),则随机变量Z服从μ=0,σ2=1的正态分布,记为Z~N(0,1),称为标准正态分布。

标准正态分布的概率密度函数为:

通过上式可以看出标准正态分布不再依赖于参数μ和σ,它是固定的,是唯一的。因此,标准正态分布中随机变量与其概率的对应关系被计算出来,并列为标准正态概率分布表,以便查询。于是,对于不同的μ和σ,只要将变量值转化为Z值,然后查表即可得到其概率值。

标准正态概率分布表

例子:已知研究生完成一篇硕士论文的时间服从正态分布,平均花费2500h,标准差为400h,现随机找到一个已完成论文的学生,求:

(1)他完成论文的时间超过2700h的概率;

(2)他完成论文的时间低于2000h的概率;

(3)他完成论文的时间在2400h~2600h之间的概率。

解:用X表示完成论文的时间,则X~N(2500,400*400)。这是非标准的正态分布,如果直接计算概率是非常麻烦的,我们首先将其转化为标准正态分布,然后通过标准正态分布表查出变量的概率值。

(1)求P(X>2700)

Z=(x-μ)/σ=(2700-2500)/400=0.5

可以查询标准正态分布概率表,表中第一列是z值,第一行是z值的补充值,现z=0.5求的是从0.5到+∞的区间上的概率,即1-0.6915 = 0.3085。

(2)求P(X<>

Z=(x-μ)/σ=(2000-2500)/400=-1.25

根据正态分布的对称性,1.25的概率值与-1.25的概率值完全对称,所以只查1.25的概率值即可。Z=1.25时,P(1.25)=0.8944,则P(-1.25)= 1-P(1.25)=0.1056

(3)求P(2400<><>

Z1=(x-μ)/σ=(2600-2500)/400=0.25

Z2=(x-μ)/σ=(2400-2500)/400=-0.25

查询标准正态分布概率表,可得出P(0.25) = 0.5987,P(-0.25) = 0.4013。

P(2400<><><2600) -=""><2400) =="" 0.5987="" -="" 0.4013="">

什么是标准差?

标准差开方就是方差

什么是标准差以及计算公式?

先求出平均数u  X为每个数,N为总共有几个数

numpy里的randn的更多相关文章

  1. python numPy模块 与numpy里的数据类型、数据类型对象dtype

    学习链接:http://www.runoob.com/numpy/numpy-tutorial.html 官方链接:https://numpy.org/devdocs/user/quickstart. ...

  2. numpy.random.rand()/randn()/randint()/normal()/choice()/RandomState()

    这玩意用了很多次,但每次用还是容易混淆,今天来总结mark一下~~~ 1. numpy.random.rand(d0,d1,...,dn) 生成一个[0,1)之间的随机数或N维数组 np.random ...

  3. numpy里*与dot与multiply

    一.*  , dot()   multiply() 1, 对于array来说,(* 和 dot()运算不同, * 和 multiply()运算相同) *和multiply() 是每个元素对应相乘 do ...

  4. Numpy 里线性代数函数

    c

  5. Python的rand vs randn以及linspace

    Numpy里面的randn是满足了整体分布的,normal distribution(正态分布):rand则是满足了Uniform Distribution(均匀分布): Linspace(start ...

  6. NumPy的详细教程

    原文  http://blog.csdn.net/lsjseu/article/details/20359201 主题 NumPy 先决条件 在阅读这个教程之前,你多少需要知道点python.如果你想 ...

  7. Numpy 学习(一)

    1.Numpy 中Matrices和arrays的区分 Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). ...

  8. Numpy基础总结

    一.文件读取 numpy.genfromtxt() 可以用来读取各种文件.常用语法大致如下: numpy.genfromtxt(fname, dtype=<type 'float'>, d ...

  9. 【转】numpy教程

    [转载说明] 本来没有必要转载的,只是网上的版本排版不是太好,看的不舒服.所以转过来,重新排版,便于自己查看. 基础篇 NumPy的主要对象是同种元素的多维数组. 这是一个所有的元素都是一种类型.通过 ...

随机推荐

  1. lucene4 Filter

    摘要: 关于过滤方面的知识,也就是Filter,如果了解Solr的朋友们,肯定都会知道Solr里面fq这个参数,这个参数的作用其实就是lucene里面的过滤,对一些q参数查询的结果集,做过滤或者限制返 ...

  2. php 从2维数组组合为四维数组分析

  3. kbmMW 5.06.20试用笔记

    1.kbmMWConfiguration自动备份配置文件的问题还没有修正. 下面是以前写过的内容,再一次在新闻组中提出这个问题: kbmMW提供一个强大的配置信息管理对象,前期译过这个对象的介绍,在使 ...

  4. cocos2dx 不同平台上加载文件

    原文转自:http://blog.sina.com.cn/s/blog_62b2318d0101eozt.html cocos2dx在不同平台上读取资源文件时的处理方式是不同的. 在ios下,程序调用 ...

  5. windows server 账号克隆

    在dos命令行下隐藏用户的方法:   net user 账户 密码 /add 如果在账号后加 $ 符号 这个账户在cmd命令行下是无法看见的 首先我们设置注册表权限 cmd = > regedt ...

  6. git添加本地项目到git

    1.切换到项目所在文件夹下:git int 2.git add -A 3.git commit -m '11' 4.git remote add origin https://github.com/g ...

  7. cache和buffer区别

     Cache: 一般用于读缓存,用于将频繁读取的内容放入缓存,下次在读取相同的内容,直接从缓存冲读取,提高读取性能,缓存可以有多级. Buffer:一般用于写缓存,用于解决不同介质直接存储速度的不同, ...

  8. 大家一起做训练 第一场 G CD

    题目来源:UVA 624 题目的意思就是:我现在需要从 t 张CD中拿出一部分来,尽可能的凑出接近 N 这么久的音乐,但是不能超过 N. CD不超过20张,每张长度不超过 N ,不能重复选. 一个很简 ...

  9. 初识Tarjan算法

    #include<bits/stdc++.h> using namespace std; ; ;//强连通分量的个数 int stk[maxn];//暂时存放遍历过的点,在遇到low[x] ...

  10. 最短路--spfa+队列优化模板

    spfa普通版就不写了,优化还是要的昂,spfa是可以判负环,接受负权边和重边的,判断负环只需要另开一个数组记录每个结点的入队次数,当有任意一个结点入队大于点数就表明有负环存在 #include< ...