1030 Travel Plan (30 分)
A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤500) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:
City1 City2 Distance Cost
where the numbers are all integers no more than 500, and are separated by a space.
Output Specification:
For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.
Sample Input:
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
Sample Output:
0 2 3 3 40
分析:水题~
方法一:本题没有涉及有多个前驱结点,直接用Dijkstra,注意用递归输出最短路径的写法即可。
/**
* Copyright(c)
* All rights reserved.
* Author : Mered1th
* Date : 2019-02-22-21.43.06
* Description : A1030
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<string>
#include<unordered_set>
#include<map>
#include<vector>
#include<set>
using namespace std;
;
;
int n,m,st,ed;
int d[maxn],c[maxn],cost[maxn][maxn],G[maxn][maxn],pre[maxn];
vector<int> tempPath,path;
bool vis[maxn]={false};
void Dijkstra(int s){
fill(d,d+maxn,INF);
fill(c,c+maxn,INF);
d[s]=;
c[s]=;
;i<n;i++) pre[i]=i;
;i<n;i++){
,MIN=INF;
;j<n;j++){
if(d[j]<MIN && vis[j]==false){
u=j;
MIN=d[j];
}
}
) return;
vis[u]=true;
;v<n;v++){
if(G[u][v]!=INF && vis[v]==false){
if(d[v]>d[u]+G[u][v]){
d[v]=d[u]+G[u][v];
c[v]=c[u]+cost[u][v];
pre[v]=u;
}
else if(d[v]==d[u]+G[u][v]){
if(c[v]>c[u]+cost[u][v]){
c[v]=c[u]+cost[u][v];
pre[v]=u;
}
}
}
}
}
}
void DFS(int s,int v){
if(v==st){
printf("%d ",st);
return;
}
DFS(s,pre[v]);
printf("%d ",v);
}
int main(){
#ifdef ONLINE_JUDGE
#else
freopen("1.txt", "r", stdin);
#endif
cin>>n>>m>>st>>ed;
int a,b,dis,cos;
fill(G[],G[]+maxn*maxn,INF);
;i<m;i++){
scanf("%d%d%d%d",&a,&b,&dis,&cos);
G[a][b]=G[b][a]=dis;
cost[a][b]=cost[b][a]=cos;
}
Dijkstra(st);
DFS(st,ed);
printf("%d %d\n",d[ed],c[ed]);
;
}
方法二:Dijkstra+DFS写法
在写Dijkstra的时候不考虑路径的开销cost,只记录最短路径。
而在写DFS函数内再计算每条最短路径的开销,求出最小开销的最短路径并输出。
/**
* Copyright(c)
* All rights reserved.
* Author : Mered1th
* Date : 2019-02-22-21.43.06
* Description : A1030
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<string>
#include<unordered_set>
#include<map>
#include<vector>
#include<set>
using namespace std;
;
;
int n,m,st,ed,minCost=INF;
int d[maxn],cost[maxn][maxn],G[maxn][maxn];
vector<int> tempPath,path;
vector<int> pre[maxn];
bool vis[maxn]={false};
void Dijkstra(int s){
fill(d,d+maxn,INF);
d[s]=;
;i<n;i++){
,MIN=INF;
;j<n;j++){
if(d[j]<MIN && vis[j]==false){
u=j;
MIN=d[j];
}
}
) return;
vis[u]=true;
;v<n;v++){
if(G[u][v]!=INF && vis[v]==false){
if(d[v]>d[u]+G[u][v]){
d[v]=d[u]+G[u][v];
pre[v].clear();
pre[v].push_back(u);
}
else if(d[v]==d[u]+G[u][v]){
pre[v].push_back(u);
}
}
}
}
}
void DFS(int v){
if(v==st){
tempPath.push_back(v);
;
;i>;i--){
];
tempCost+=cost[id][idNext];
}
if(tempCost<minCost){
minCost=tempCost;
path=tempPath;
}
tempPath.pop_back();
return;
}
tempPath.push_back(v);
;i<pre[v].size();i++){
DFS(pre[v][i]);
}
tempPath.pop_back();
}
int main(){
#ifdef ONLINE_JUDGE
#else
freopen("1.txt", "r", stdin);
#endif
cin>>n>>m>>st>>ed;
int a,b,dis,cos;
fill(G[],G[]+maxn*maxn,INF);
;i<m;i++){
scanf("%d%d%d%d",&a,&b,&dis,&cos);
G[a][b]=G[b][a]=dis;
cost[a][b]=cost[b][a]=cos;
}
Dijkstra(st);
DFS(ed);
;i>=;i--){
printf("%d ",path[i]);
}
printf("%d %d\n",d[ed],minCost);
;
}
1030 Travel Plan (30 分)的更多相关文章
- PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)
1030 Travel Plan (30 分) A traveler's map gives the distances between cities along the highways, to ...
- 1030 Travel Plan (30分)(dijkstra 具有多种决定因素)
A traveler's map gives the distances between cities along the highways, together with the cost of ea ...
- 【PAT甲级】1030 Travel Plan (30 分)(SPFA,DFS)
题意: 输入N,M,S,D(N,M<=500,0<S,D<N),接下来M行输入一条边的起点,终点,通过时间和通过花费.求花费最小的最短路,输入这条路径包含起点终点,通过时间和通过花费 ...
- PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS
PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...
- [图算法] 1030. Travel Plan (30)
1030. Travel Plan (30) A traveler's map gives the distances between cities along the highways, toget ...
- 1030 Travel Plan (30)(30 分)
A traveler's map gives the distances between cities along the highways, together with the cost of ea ...
- PAT A 1030. Travel Plan (30)【最短路径】
https://www.patest.cn/contests/pat-a-practise/1030 找最短路,如果有多条找最小消耗的,相当于找两次最短路,可以直接dfs,数据小不会超时. #incl ...
- 1030. Travel Plan (30)
时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue A traveler's map gives the dista ...
- PAT Advanced 1030 Travel Plan (30) [Dijkstra算法 + DFS,最短路径,边权]
题目 A traveler's map gives the distances between cities along the highways, together with the cost of ...
- PAT (Advanced Level) 1030. Travel Plan (30)
先处理出最短路上的边.变成一个DAG,然后在DAG上进行DFS. #include<iostream> #include<cstring> #include<cmath& ...
随机推荐
- BadUSB测试记录
0x00 前言 不是很新的东西,其他作者已对此做过研究测试,本文仅用来记录操作过程,保存日志,说明细节. 0x01参考资料 https://github.com/adamcaudill/Psychso ...
- git stash,git cherry-pick
git stash: 备份当前的工作区的内容,从最近的一次提交中读取相关内容,让工作区保证和上次提交的内容一致.同时,将当前的工作区内容保存到Git栈中.git stash pop: 从Git栈中读取 ...
- 京东Java面试题(二)
1.set集合从原理上如何保证不重复 1)在往set中添加元素时,如果指定元素不存在,则添加成功.也就是说,如果set中不存在(e==null ? e1==null : e.queals(e1))的元 ...
- PyTorch 数据集类 和 数据加载类 的一些尝试
最近在学习PyTorch, 但是对里面的数据类和数据加载类比较迷糊,可能是封装的太好大部分情况下是不需要有什么自己的操作的,不过偶然遇到一些自己导入的数据时就会遇到一些问题,因此自己对此做了一些小实 ...
- HihoCoder - 1789:阶乘问题 (简单数学)
描述 给定 n, k,求一个最大的整数 m,使得 km 是 n! 的约数 输入 第一行两个正整数 n, k 2 ≤ n,k ≤ 109 输出 输出最大的 m 样例输入 5 2 样例输出 3 思路:我们 ...
- 20155310 2016-2017-2 《Java程序设计》第八周学习总结
20155310 2016-2017-2 <Java程序设计>第八周学习总结 教材学习内容总结 第十五章 通用API 通用API •日志:日志对信息安全意义重大,审计.取证.入侵检验等都会 ...
- Linux下rsync命令使用总结
一.rsync的概述 rsync是类unix系统下的数据镜像备份工具,从软件的命名上就可以看出来了——remote sync.rsync是Linux系统下的文件同步和数据传输工具,它采用“rsync” ...
- dbt 包管理
dbt 可以方便的支持基于git 的包管理 依赖申明 位置 dbt_project.yml 中的repositories 或者使用packages.yaml 格式 dbt_project.yml: r ...
- stenciljs 学习八 组件测试
测试对于框架来说比较重要,对于web 组件的测试同样很重要,类似的jest 很方便,stenciljs也是基于jest 开发的 包含两个核心api render(), flush() 测试配置 pac ...
- Understanding Safari Reader
Interesting enough to find out the Reader function in Safari is actually Javascript and there are ma ...