1030 Travel Plan (30 分)

A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤500) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

City1 City2 Distance Cost

where the numbers are all integers no more than 500, and are separated by a space.

Output Specification:

For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

Sample Input:

4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20

Sample Output:

0 2 3 3 40

分析:水题~

方法一:本题没有涉及有多个前驱结点,直接用Dijkstra,注意用递归输出最短路径的写法即可。

 /**
 * Copyright(c)
 * All rights reserved.
 * Author : Mered1th
 * Date : 2019-02-22-21.43.06
 * Description : A1030
 */
 #include<cstdio>
 #include<cstring>
 #include<iostream>
 #include<cmath>
 #include<algorithm>
 #include<string>
 #include<unordered_set>
 #include<map>
 #include<vector>
 #include<set>
 using namespace std;
 ;
 ;
 int n,m,st,ed;
 int d[maxn],c[maxn],cost[maxn][maxn],G[maxn][maxn],pre[maxn];
 vector<int> tempPath,path;
 bool vis[maxn]={false};
 void Dijkstra(int s){
     fill(d,d+maxn,INF);
     fill(c,c+maxn,INF);
     d[s]=;
     c[s]=;
     ;i<n;i++) pre[i]=i;
     ;i<n;i++){
         ,MIN=INF;
         ;j<n;j++){
             if(d[j]<MIN && vis[j]==false){
                 u=j;
                 MIN=d[j];
             }
         }
         ) return;
         vis[u]=true;
         ;v<n;v++){
             if(G[u][v]!=INF && vis[v]==false){
                 if(d[v]>d[u]+G[u][v]){
                     d[v]=d[u]+G[u][v];
                     c[v]=c[u]+cost[u][v];
                     pre[v]=u;
                 }
                 else if(d[v]==d[u]+G[u][v]){
                     if(c[v]>c[u]+cost[u][v]){
                         c[v]=c[u]+cost[u][v];
                         pre[v]=u;
                     }
                 }
             }
         }
     }
 }

 void DFS(int s,int v){
     if(v==st){
         printf("%d ",st);
         return;
     }
     DFS(s,pre[v]);
     printf("%d ",v);
 }

 int main(){
 #ifdef ONLINE_JUDGE
 #else
     freopen("1.txt", "r", stdin);
 #endif
     cin>>n>>m>>st>>ed;
     int a,b,dis,cos;
     fill(G[],G[]+maxn*maxn,INF);
     ;i<m;i++){
         scanf("%d%d%d%d",&a,&b,&dis,&cos);
         G[a][b]=G[b][a]=dis;
         cost[a][b]=cost[b][a]=cos;
     }
     Dijkstra(st);
     DFS(st,ed);
     printf("%d %d\n",d[ed],c[ed]);
     ;
 }

方法二:Dijkstra+DFS写法

在写Dijkstra的时候不考虑路径的开销cost,只记录最短路径。

而在写DFS函数内再计算每条最短路径的开销,求出最小开销的最短路径并输出。

 /**
 * Copyright(c)
 * All rights reserved.
 * Author : Mered1th
 * Date : 2019-02-22-21.43.06
 * Description : A1030
 */
 #include<cstdio>
 #include<cstring>
 #include<iostream>
 #include<cmath>
 #include<algorithm>
 #include<string>
 #include<unordered_set>
 #include<map>
 #include<vector>
 #include<set>
 using namespace std;
 ;
 ;
 int n,m,st,ed,minCost=INF;
 int d[maxn],cost[maxn][maxn],G[maxn][maxn];
 vector<int> tempPath,path;
 vector<int> pre[maxn];
 bool vis[maxn]={false};
 void Dijkstra(int s){
     fill(d,d+maxn,INF);
     d[s]=;
     ;i<n;i++){
         ,MIN=INF;
         ;j<n;j++){
             if(d[j]<MIN && vis[j]==false){
                 u=j;
                 MIN=d[j];
             }
         }
         ) return;
         vis[u]=true;
         ;v<n;v++){
             if(G[u][v]!=INF && vis[v]==false){
                 if(d[v]>d[u]+G[u][v]){
                     d[v]=d[u]+G[u][v];
                     pre[v].clear();
                     pre[v].push_back(u);
                 }
                 else if(d[v]==d[u]+G[u][v]){
                     pre[v].push_back(u);
                 }
             }
         }
     }
 }

 void DFS(int v){
     if(v==st){
         tempPath.push_back(v);
         ;
         ;i>;i--){
             ];
             tempCost+=cost[id][idNext];
         }
         if(tempCost<minCost){
             minCost=tempCost;
             path=tempPath;
         }
         tempPath.pop_back();
         return;
     }
     tempPath.push_back(v);
     ;i<pre[v].size();i++){
         DFS(pre[v][i]);
     }
     tempPath.pop_back();
 }

 int main(){
 #ifdef ONLINE_JUDGE
 #else
     freopen("1.txt", "r", stdin);
 #endif
     cin>>n>>m>>st>>ed;
     int a,b,dis,cos;
     fill(G[],G[]+maxn*maxn,INF);
     ;i<m;i++){
         scanf("%d%d%d%d",&a,&b,&dis,&cos);
         G[a][b]=G[b][a]=dis;
         cost[a][b]=cost[b][a]=cos;
     }
     Dijkstra(st);
     DFS(ed);
     ;i>=;i--){
         printf("%d ",path[i]);
     }
     printf("%d %d\n",d[ed],minCost);
     ;
 }

1030 Travel Plan (30 分)的更多相关文章

  1. PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)

    1030 Travel Plan (30 分)   A traveler's map gives the distances between cities along the highways, to ...

  2. 1030 Travel Plan (30分)(dijkstra 具有多种决定因素)

    A traveler's map gives the distances between cities along the highways, together with the cost of ea ...

  3. 【PAT甲级】1030 Travel Plan (30 分)(SPFA,DFS)

    题意: 输入N,M,S,D(N,M<=500,0<S,D<N),接下来M行输入一条边的起点,终点,通过时间和通过花费.求花费最小的最短路,输入这条路径包含起点终点,通过时间和通过花费 ...

  4. PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS

    PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...

  5. [图算法] 1030. Travel Plan (30)

    1030. Travel Plan (30) A traveler's map gives the distances between cities along the highways, toget ...

  6. 1030 Travel Plan (30)(30 分)

    A traveler's map gives the distances between cities along the highways, together with the cost of ea ...

  7. PAT A 1030. Travel Plan (30)【最短路径】

    https://www.patest.cn/contests/pat-a-practise/1030 找最短路,如果有多条找最小消耗的,相当于找两次最短路,可以直接dfs,数据小不会超时. #incl ...

  8. 1030. Travel Plan (30)

    时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue A traveler's map gives the dista ...

  9. PAT Advanced 1030 Travel Plan (30) [Dijkstra算法 + DFS,最短路径,边权]

    题目 A traveler's map gives the distances between cities along the highways, together with the cost of ...

  10. PAT (Advanced Level) 1030. Travel Plan (30)

    先处理出最短路上的边.变成一个DAG,然后在DAG上进行DFS. #include<iostream> #include<cstring> #include<cmath& ...

随机推荐

  1. 玩转X-CTR100 l STM32 l STM32F4 l 蓝牙串口通信

    我造轮子,你造车,创客一起造起来!更多塔克创新资讯[塔克社区 www.xtark.cn ][塔克博客 www.cnblogs.com/xtark/ ]      蓝牙串口通信模块,X-CTR100控制 ...

  2. HDU 1589 Stars Couple(计算几何求二维平面的最近点对和最远点对)

    Time Limit: 1000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  3. UI基础:UILabel.UIFont 分类: iOS学习-UI 2015-07-01 19:38 107人阅读 评论(0) 收藏

    UILabel:标签 继承自UIView ,在UIView基础上扩充了显示文本的功能.(文本框) UILabel的使用步骤 1.创建控件 UILabel *aLabel=[[UILabel alloc ...

  4. ios app 开发中ipa重新签名步骤介绍

    作为一个app应用程序开发者,在app应用程序在苹果商店上架前总需要将安装包安装到ios机器上进行测试,这个时候我们就需要打包in house版本的ipa了,打包in house实际上是一个将ipa应 ...

  5. OK335xS-Android pack-ubi-256M.sh hacking

    #/******************************************************************************* # * OK335xS-Androi ...

  6. linux下磁盘分区详解

    Centos下磁盘管理     1.磁盘分区格式说明 linux分区不同于windows,linux下硬盘设备名为(IDE硬盘为hdx(x为从a—d)因为IDE硬盘最多四个,SCSI,SATA,USB ...

  7. python绘制树枝

    python是解释型语言,下面的程序深刻的说明了这个问题. import turtle def branch(length,level): if level<=0: return turtle. ...

  8. js窗口拖动 模版

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...

  9. test20180922 世界第一的猛汉王

    题意 分析 由于异色点必有连边,所以一个点的covered减去两个点共有的covered就是可存在的环数,十分巧妙. 代码 #include <bits/stdc++.h> using L ...

  10. LG2945 【[USACO09MAR]沙堡Sand Castle】

    经典的贪心模型,常规思路:将M和B排序即可 看到没有人用优先队列,于是我的showtime到了 说下思路: 读入时将数加入啊a,b堆中,不用处理(二叉堆本来就有有序的性质) 读完后逐个判断,照题目模拟 ...