1030 Travel Plan (30 分)

A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤500) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

City1 City2 Distance Cost

where the numbers are all integers no more than 500, and are separated by a space.

Output Specification:

For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

Sample Input:

4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20

Sample Output:

0 2 3 3 40

分析:水题~

方法一:本题没有涉及有多个前驱结点,直接用Dijkstra,注意用递归输出最短路径的写法即可。

 /**
 * Copyright(c)
 * All rights reserved.
 * Author : Mered1th
 * Date : 2019-02-22-21.43.06
 * Description : A1030
 */
 #include<cstdio>
 #include<cstring>
 #include<iostream>
 #include<cmath>
 #include<algorithm>
 #include<string>
 #include<unordered_set>
 #include<map>
 #include<vector>
 #include<set>
 using namespace std;
 ;
 ;
 int n,m,st,ed;
 int d[maxn],c[maxn],cost[maxn][maxn],G[maxn][maxn],pre[maxn];
 vector<int> tempPath,path;
 bool vis[maxn]={false};
 void Dijkstra(int s){
     fill(d,d+maxn,INF);
     fill(c,c+maxn,INF);
     d[s]=;
     c[s]=;
     ;i<n;i++) pre[i]=i;
     ;i<n;i++){
         ,MIN=INF;
         ;j<n;j++){
             if(d[j]<MIN && vis[j]==false){
                 u=j;
                 MIN=d[j];
             }
         }
         ) return;
         vis[u]=true;
         ;v<n;v++){
             if(G[u][v]!=INF && vis[v]==false){
                 if(d[v]>d[u]+G[u][v]){
                     d[v]=d[u]+G[u][v];
                     c[v]=c[u]+cost[u][v];
                     pre[v]=u;
                 }
                 else if(d[v]==d[u]+G[u][v]){
                     if(c[v]>c[u]+cost[u][v]){
                         c[v]=c[u]+cost[u][v];
                         pre[v]=u;
                     }
                 }
             }
         }
     }
 }

 void DFS(int s,int v){
     if(v==st){
         printf("%d ",st);
         return;
     }
     DFS(s,pre[v]);
     printf("%d ",v);
 }

 int main(){
 #ifdef ONLINE_JUDGE
 #else
     freopen("1.txt", "r", stdin);
 #endif
     cin>>n>>m>>st>>ed;
     int a,b,dis,cos;
     fill(G[],G[]+maxn*maxn,INF);
     ;i<m;i++){
         scanf("%d%d%d%d",&a,&b,&dis,&cos);
         G[a][b]=G[b][a]=dis;
         cost[a][b]=cost[b][a]=cos;
     }
     Dijkstra(st);
     DFS(st,ed);
     printf("%d %d\n",d[ed],c[ed]);
     ;
 }

方法二:Dijkstra+DFS写法

在写Dijkstra的时候不考虑路径的开销cost,只记录最短路径。

而在写DFS函数内再计算每条最短路径的开销,求出最小开销的最短路径并输出。

 /**
 * Copyright(c)
 * All rights reserved.
 * Author : Mered1th
 * Date : 2019-02-22-21.43.06
 * Description : A1030
 */
 #include<cstdio>
 #include<cstring>
 #include<iostream>
 #include<cmath>
 #include<algorithm>
 #include<string>
 #include<unordered_set>
 #include<map>
 #include<vector>
 #include<set>
 using namespace std;
 ;
 ;
 int n,m,st,ed,minCost=INF;
 int d[maxn],cost[maxn][maxn],G[maxn][maxn];
 vector<int> tempPath,path;
 vector<int> pre[maxn];
 bool vis[maxn]={false};
 void Dijkstra(int s){
     fill(d,d+maxn,INF);
     d[s]=;
     ;i<n;i++){
         ,MIN=INF;
         ;j<n;j++){
             if(d[j]<MIN && vis[j]==false){
                 u=j;
                 MIN=d[j];
             }
         }
         ) return;
         vis[u]=true;
         ;v<n;v++){
             if(G[u][v]!=INF && vis[v]==false){
                 if(d[v]>d[u]+G[u][v]){
                     d[v]=d[u]+G[u][v];
                     pre[v].clear();
                     pre[v].push_back(u);
                 }
                 else if(d[v]==d[u]+G[u][v]){
                     pre[v].push_back(u);
                 }
             }
         }
     }
 }

 void DFS(int v){
     if(v==st){
         tempPath.push_back(v);
         ;
         ;i>;i--){
             ];
             tempCost+=cost[id][idNext];
         }
         if(tempCost<minCost){
             minCost=tempCost;
             path=tempPath;
         }
         tempPath.pop_back();
         return;
     }
     tempPath.push_back(v);
     ;i<pre[v].size();i++){
         DFS(pre[v][i]);
     }
     tempPath.pop_back();
 }

 int main(){
 #ifdef ONLINE_JUDGE
 #else
     freopen("1.txt", "r", stdin);
 #endif
     cin>>n>>m>>st>>ed;
     int a,b,dis,cos;
     fill(G[],G[]+maxn*maxn,INF);
     ;i<m;i++){
         scanf("%d%d%d%d",&a,&b,&dis,&cos);
         G[a][b]=G[b][a]=dis;
         cost[a][b]=cost[b][a]=cos;
     }
     Dijkstra(st);
     DFS(ed);
     ;i>=;i--){
         printf("%d ",path[i]);
     }
     printf("%d %d\n",d[ed],minCost);
     ;
 }

1030 Travel Plan (30 分)的更多相关文章

  1. PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)

    1030 Travel Plan (30 分)   A traveler's map gives the distances between cities along the highways, to ...

  2. 1030 Travel Plan (30分)(dijkstra 具有多种决定因素)

    A traveler's map gives the distances between cities along the highways, together with the cost of ea ...

  3. 【PAT甲级】1030 Travel Plan (30 分)(SPFA,DFS)

    题意: 输入N,M,S,D(N,M<=500,0<S,D<N),接下来M行输入一条边的起点,终点,通过时间和通过花费.求花费最小的最短路,输入这条路径包含起点终点,通过时间和通过花费 ...

  4. PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS

    PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...

  5. [图算法] 1030. Travel Plan (30)

    1030. Travel Plan (30) A traveler's map gives the distances between cities along the highways, toget ...

  6. 1030 Travel Plan (30)(30 分)

    A traveler's map gives the distances between cities along the highways, together with the cost of ea ...

  7. PAT A 1030. Travel Plan (30)【最短路径】

    https://www.patest.cn/contests/pat-a-practise/1030 找最短路,如果有多条找最小消耗的,相当于找两次最短路,可以直接dfs,数据小不会超时. #incl ...

  8. 1030. Travel Plan (30)

    时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue A traveler's map gives the dista ...

  9. PAT Advanced 1030 Travel Plan (30) [Dijkstra算法 + DFS,最短路径,边权]

    题目 A traveler's map gives the distances between cities along the highways, together with the cost of ...

  10. PAT (Advanced Level) 1030. Travel Plan (30)

    先处理出最短路上的边.变成一个DAG,然后在DAG上进行DFS. #include<iostream> #include<cstring> #include<cmath& ...

随机推荐

  1. IOS多线程编程:概述

    什么是多线程 多线程是一个比较轻量级的方法来实现单个应用程序内多个代码执行路径.从技术角度来看,一个线程就是一个需要管理执行代码的内核级和应用级数据结构组合.内核级结构协助调度线程事件,并抢占式调度一 ...

  2. Vue 相关难点汇总

    1. 父子组件的双向数据绑定,所以在子组件是不允许修改父组件的属性的. // 解决办法 // 在子组件data中定义一个父组件传递过来的副本,再把该副本利用this.$emit("" ...

  3. L207

    The leaders of the two countries are planning their summit meeting with a (pledge) to maintain and d ...

  4. 在树莓派上运行 .net core 2.1 程序 并实现开机启动

    本篇文章完整的说明如和在树莓派上运行 .net core2.1程序,当然也参考了其他的博客,此处结合我自己的经验,再写一篇完整的博客,方便大家,还有我自己进行查阅. https://blog.csdn ...

  5. Tomcat结合nginx使用入门

    Nginx: Nginx是一款高性能,轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器. 特点是:占有内存少,并发能力强. 反向代理服务器: 反向代理(Reverse  ...

  6. 1.1 Linux中的进程 --fork、孤儿进程、僵尸进程、文件共享分析

    操作系统经典的三态如下: 1.就绪态 2.等待(阻塞) 3.运行态 其转换状态如下图所示: 操作系统内核中会维护多个队列,将不同状态的进程加入到不同的队列中,其中撤销是进程运行结束后,由内核收回. 以 ...

  7. iOS-----使用CFNetwork实现TCP协议的通信

    使用CFNetwork实现TCP协议的通信 TCP/IP通信协议是一种可靠的网络协议,它在通信的两端各建立一个通信接口,从而在通信的两端之间形成网络虚拟链路.一旦建立了虚拟的网络链路,两端的程序就可以 ...

  8. Mr. Kitayuta's Colorful Graph CodeForces - 506D(均摊复杂度)

    Mr. Kitayuta has just bought an undirected graph with n vertices and m edges. The vertices of the gr ...

  9. js 如何控制文本域输入内容在一定间隔时间段才触发事件查询相关数据

    <script>var flag = 0;var t;function openFlag () { t = setTimeout(function(){flag = 1; dosometh ...

  10. 偶尔用得上的MySQL操作

    数据库编码 查看数据库编码 use xxx show variables like 'character_set_database'; 切换数据库编码 alter database xxx CHARA ...