1030 Travel Plan (30 分)
A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤500) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:
City1 City2 Distance Cost
where the numbers are all integers no more than 500, and are separated by a space.
Output Specification:
For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.
Sample Input:
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
Sample Output:
0 2 3 3 40
分析:水题~
方法一:本题没有涉及有多个前驱结点,直接用Dijkstra,注意用递归输出最短路径的写法即可。
/**
* Copyright(c)
* All rights reserved.
* Author : Mered1th
* Date : 2019-02-22-21.43.06
* Description : A1030
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<string>
#include<unordered_set>
#include<map>
#include<vector>
#include<set>
using namespace std;
;
;
int n,m,st,ed;
int d[maxn],c[maxn],cost[maxn][maxn],G[maxn][maxn],pre[maxn];
vector<int> tempPath,path;
bool vis[maxn]={false};
void Dijkstra(int s){
fill(d,d+maxn,INF);
fill(c,c+maxn,INF);
d[s]=;
c[s]=;
;i<n;i++) pre[i]=i;
;i<n;i++){
,MIN=INF;
;j<n;j++){
if(d[j]<MIN && vis[j]==false){
u=j;
MIN=d[j];
}
}
) return;
vis[u]=true;
;v<n;v++){
if(G[u][v]!=INF && vis[v]==false){
if(d[v]>d[u]+G[u][v]){
d[v]=d[u]+G[u][v];
c[v]=c[u]+cost[u][v];
pre[v]=u;
}
else if(d[v]==d[u]+G[u][v]){
if(c[v]>c[u]+cost[u][v]){
c[v]=c[u]+cost[u][v];
pre[v]=u;
}
}
}
}
}
}
void DFS(int s,int v){
if(v==st){
printf("%d ",st);
return;
}
DFS(s,pre[v]);
printf("%d ",v);
}
int main(){
#ifdef ONLINE_JUDGE
#else
freopen("1.txt", "r", stdin);
#endif
cin>>n>>m>>st>>ed;
int a,b,dis,cos;
fill(G[],G[]+maxn*maxn,INF);
;i<m;i++){
scanf("%d%d%d%d",&a,&b,&dis,&cos);
G[a][b]=G[b][a]=dis;
cost[a][b]=cost[b][a]=cos;
}
Dijkstra(st);
DFS(st,ed);
printf("%d %d\n",d[ed],c[ed]);
;
}
方法二:Dijkstra+DFS写法
在写Dijkstra的时候不考虑路径的开销cost,只记录最短路径。
而在写DFS函数内再计算每条最短路径的开销,求出最小开销的最短路径并输出。
/**
* Copyright(c)
* All rights reserved.
* Author : Mered1th
* Date : 2019-02-22-21.43.06
* Description : A1030
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<string>
#include<unordered_set>
#include<map>
#include<vector>
#include<set>
using namespace std;
;
;
int n,m,st,ed,minCost=INF;
int d[maxn],cost[maxn][maxn],G[maxn][maxn];
vector<int> tempPath,path;
vector<int> pre[maxn];
bool vis[maxn]={false};
void Dijkstra(int s){
fill(d,d+maxn,INF);
d[s]=;
;i<n;i++){
,MIN=INF;
;j<n;j++){
if(d[j]<MIN && vis[j]==false){
u=j;
MIN=d[j];
}
}
) return;
vis[u]=true;
;v<n;v++){
if(G[u][v]!=INF && vis[v]==false){
if(d[v]>d[u]+G[u][v]){
d[v]=d[u]+G[u][v];
pre[v].clear();
pre[v].push_back(u);
}
else if(d[v]==d[u]+G[u][v]){
pre[v].push_back(u);
}
}
}
}
}
void DFS(int v){
if(v==st){
tempPath.push_back(v);
;
;i>;i--){
];
tempCost+=cost[id][idNext];
}
if(tempCost<minCost){
minCost=tempCost;
path=tempPath;
}
tempPath.pop_back();
return;
}
tempPath.push_back(v);
;i<pre[v].size();i++){
DFS(pre[v][i]);
}
tempPath.pop_back();
}
int main(){
#ifdef ONLINE_JUDGE
#else
freopen("1.txt", "r", stdin);
#endif
cin>>n>>m>>st>>ed;
int a,b,dis,cos;
fill(G[],G[]+maxn*maxn,INF);
;i<m;i++){
scanf("%d%d%d%d",&a,&b,&dis,&cos);
G[a][b]=G[b][a]=dis;
cost[a][b]=cost[b][a]=cos;
}
Dijkstra(st);
DFS(ed);
;i>=;i--){
printf("%d ",path[i]);
}
printf("%d %d\n",d[ed],minCost);
;
}
1030 Travel Plan (30 分)的更多相关文章
- PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)
1030 Travel Plan (30 分) A traveler's map gives the distances between cities along the highways, to ...
- 1030 Travel Plan (30分)(dijkstra 具有多种决定因素)
A traveler's map gives the distances between cities along the highways, together with the cost of ea ...
- 【PAT甲级】1030 Travel Plan (30 分)(SPFA,DFS)
题意: 输入N,M,S,D(N,M<=500,0<S,D<N),接下来M行输入一条边的起点,终点,通过时间和通过花费.求花费最小的最短路,输入这条路径包含起点终点,通过时间和通过花费 ...
- PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS
PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...
- [图算法] 1030. Travel Plan (30)
1030. Travel Plan (30) A traveler's map gives the distances between cities along the highways, toget ...
- 1030 Travel Plan (30)(30 分)
A traveler's map gives the distances between cities along the highways, together with the cost of ea ...
- PAT A 1030. Travel Plan (30)【最短路径】
https://www.patest.cn/contests/pat-a-practise/1030 找最短路,如果有多条找最小消耗的,相当于找两次最短路,可以直接dfs,数据小不会超时. #incl ...
- 1030. Travel Plan (30)
时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue A traveler's map gives the dista ...
- PAT Advanced 1030 Travel Plan (30) [Dijkstra算法 + DFS,最短路径,边权]
题目 A traveler's map gives the distances between cities along the highways, together with the cost of ...
- PAT (Advanced Level) 1030. Travel Plan (30)
先处理出最短路上的边.变成一个DAG,然后在DAG上进行DFS. #include<iostream> #include<cstring> #include<cmath& ...
随机推荐
- L1-011 A-B
本题要求你计算A−B.不过麻烦的是,A和B都是字符串 —— 即从字符串A中把字符串B所包含的字符全删掉,剩下的字符组成的就是字符串A−B. 输入格式: 输入在2行中先后给出字符串A和B.两字符串的长度 ...
- SharePoint 2013的100个新功能之网站管理(一)
一:设置盘 网站操作现在被替换为新的(设置)盘子.一些新的操作像添加一个应用.添加一个页面或设计管理器被添加而像创建网站则从菜单中移除了. 二:移除以其他用户身份登录 在SharePoint 2013 ...
- Python获取路径下所有文件名
python 获取当前文件夹下所有文件名 os 模块下有两个函数: os.walk() os.listdir() 1 # -*- coding: utf-8 -*- 2 3 import os 4 ...
- Java数字签名算法--RSA
签名具有的特性: 安全性 抗否认性 数字签名:带有密钥(公钥.私钥)的消息摘要算法(使用私钥进行签名,使用公钥进行验证) 数字签名算法:RSA.DSA.ECDSA 数字签名特性: 验证数据完整性 认证 ...
- jq 的onchange事件
按商品类型显示:<select onchange="location.href='__ACTION__/type_id/'+this.value;"> <o ...
- 玩转树莓派:OpenHAB的入门(二)
通过第一篇的介绍,我们现在已经安装了OpenHAB和Demo House,那么接下来我们来看一下OpenHAB是如何工作的. OpenHAB如何工作? 接下来你会在openHAB配置的共享文件夹看到s ...
- Linux C 文件操作函数(~上善止水~)
翻翻笔记,整理一下 C 语言中的文件操作函数 ~~~~~~,多注意细节,maybe 细节决定成败~ 1. fopen /* fopen(打开文件) * * 相关函数 open,fclose * * 表 ...
- TouchJSON的简单使用
TouchJSON是OC转换JSON的一个第三方类库,使用简单.在GitHub上可以轻松获取:TouchJSON 以下是简单的事例演示从douban movie请求JSON数据并转为字典对象后对控件赋 ...
- Hihocoder1883 : 生成树问题(并查集+树剖+线段树)
描述 有一个无向图,有n个点,m1条第一类边和m2条第二类边.第一类边有边权,第二类边无边权.请为第二类的每条边定义一个边权,使得第二类边可能全部出现在该无向图的最小生成树上,同时要求第二类边的边权总 ...
- hdu2090-2097
hdu2090 模拟 #include<stdio.h> int main(){ ]; ,a1,a2; ; while(scanf("%s%lf%lf",b,& ...