1.安装anaconda2

  安装好之后,本地python环境就采用anaconda自带的python2.7的环境。

2.安装py4j

  在本地ctrl+r打开控制台后,直接使用pip安装py4j,因为anaconda默认是安装了pip的,当然也可以使用conda安装。

  安装命令:pip install py4j

  如果不安装py4j可能出现的问题?

答:因为Spark的Python版本的API依赖于py4j,如果不安装运行程序会抛出如下错误。

     

3.配置环境变量

  配置PyCharm的环境变量主要配置两个变量一个是SPARK_HOME,另外一个是PYTHONPATH。

(1).先打开Run Configurations

(创建一个项目,项目或python文件的左上角有该选项)
  

(2).编辑Environment variables

    
或者按下面的方式展开

菜单:File-->Settings (图来源于互联网~这里我用的是python2)

(3).在Environment variables下增加spark和python的环境

  增加SPARK_HOME目录与PYTHONPATH目录。

  - SPARK_HOME:Spark安装目录

  - PYTHONPATH:Spark安装目录下的Python目录

4.复制pyspark的包

编写Spark程序,复制pyspark的包,增加代码显示功能

为了让我们在PyCharm编写Spark程序时有代码提示和补全功能,需要将Spark的pyspark导入到Python中。在Spark的程序中有Python的包,叫做pyspark

pyspark包

Python导入第三方的包也很容易,只需要把相应的模块导入到指定的文件夹就可以了。
windows中将pyspark拷贝到Python的site-packages目录下(这里使用的是anaconda)

5.测试代码

import sys
from operator import add from pyspark import SparkContext
logFile = "D:\\BigData\\Workspace\\PycharmProjects\\MachineLearning1\\word.txt"
sc = SparkContext("local", "PythonWordCount")
logData = sc.textFile(logFile).cache() numAs = logData.filter(lambda s: 'a' in s).count()
numBs = logData.filter(lambda s: 'b' in s).count() print("Lines with a: %i, lines with b: %i" % (numAs, numBs))


PyCharm+Eclipse共用Anaconda的数据科学环境的更多相关文章

  1. (数据科学学习手札81)conda+jupyter玩转数据科学环境搭建

    本文示例yaml文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们在使用Python进行数据分析时,很 ...

  2. Manjaro折腾笔记:我的数据科学环境搭建之路

    ss并且开机启动 0. 安装shadowsocks sudo pip install shadowsocks 1. 建立配置文件ss.json 我的位置是:/home/ray/Documents/sh ...

  3. python和数据科学(Anaconda)

    Python拥有着极其丰富且稳定的数据科学工具环境.遗憾的是,对不了解的人来说这个环境犹如丛林一般(cue snake joke).在这篇文章中,我会一步一步指导你怎么进入这个PyData丛林. 你可 ...

  4. 《Python数据科学手册》

    <Python数据科学手册>[美]Jake VanderPlas著 陶俊杰译 Absorb what is useful, discard what is not, and  add wh ...

  5. 干货!小白入门Python数据科学全教程

    前言 本文讲解了从零开始学习Python数据科学的全过程,涵盖各种工具和方法 你将会学习到如何使用python做基本的数据分析 你还可以了解机器学习算法的原理和使用 说明 先说一段题外话.我是一名数据 ...

  6. python3 数据科学基础

    第一章 1.Anaconda(最著名的python数据科学平台) 下面小伙伴们咱们来初初识下Anaconda吧 What is Anaconda???? 回答: (1).科学计算的平台 (2).有很多 ...

  7. Python数据科学“冷门”库

    Python是一种神奇的语言.事实上,它是近几年世界上发展最快的编程语言之一,它一次又一次证明了它在开发工作和数据科学立场各行业的实用性.整个Python系统和库是对于世界各地的用户(无论是初学者或者 ...

  8. 9 个鲜为人知的 Python 数据科学库

    除了 pandas.scikit-learn 和 matplotlib,还要学习一些用 Python 进行数据科学的新技巧. Python 是一种令人惊叹的语言.事实上,它是世界上增长最快的编程语言之 ...

  9. (数据科学学习手札50)基于Python的网络数据采集-selenium篇(上)

    一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文 ...

随机推荐

  1. [web] spring boot 整合MyBatis

    1.maven依赖 <?xml version="1.0" encoding="UTF-8"?> <project xmlns="h ...

  2. 8 -- 深入使用Spring -- 2...6 Spring 4.0 增强的自动装配和精确装配

    8.2.6 Spring 4.0 增强的自动装配和精确装配 Spring提供了@Autowired 注解来指定自动装配,@Autowired可以修饰setter方法.普通方法.实例变量和构造器等.当使 ...

  3. NetBpm 目录

    整理了一下网上的一些netbpm,虽然这项目现在不再更新了,还是想去学习一下,这个组件用时候很方便,比workFlow方便的多了 如果像jbpm那样一直更新就好了. 前两篇是个人的一个总结,后面一些是 ...

  4. 全屏加载loading显示的解决方法

    step1:可以在网页里加一个div用来现实loading. <div id="loading"> <!--这里放你的loading时显示的动画或者文字--> ...

  5. SpringBoot(十三)-- 不同环境下读取不同配置

    一.场景: 在开发过程中 会使用 开发的一套数据库,测试的时候 又会使用测试的数据库,生产环境中 又会切换到生产环境中.常用的方式是 注释掉一些配置,然后释放一下配置.SpringBoot提供了在不同 ...

  6. bool和BOOL类型知识集合

    知识点一.C语言中有bool类型吗? 转自http://blog.csdn.net/liuqiqi677/article/details/6703615 之前一直都没有注意到,最近在用C语言写DSP算 ...

  7. pom.xml文件错误

    刚创建的maven项目,马上pom.xml的第一行就报错这是第一行:<project xmlns="http://maven.apache.org/POM/4.0.0" xm ...

  8. Windows进程间共享内存通信实例

    Windows进程间共享内存通信实例 抄抄补补整出来 采用内存映射文件实现WIN32进程间的通讯:Windows中的内存映射文件的机制为我们高效地操作文件提供了一种途径,它允许我们在WIN32进程中保 ...

  9. WP8.1学习系列(第八章)——透视Pivot设计指南

    在本文中 描述 应做事项和禁止事项 其他使用指南 相关主题 重要的 API Pivot class (XAML) PivotItem class (XAML) Windows Phone 应用:具有透 ...

  10. Delphi 中DataSnap技术网摘

    Delphi2010中DataSnap技术网摘 一.为DataSnap系统服务程序添加描述 这几天一直在研究Delphi 2010的DataSnap,感觉功能真是很强大,现在足有理由证明Delphi7 ...