本章主要具体解释的是compressive tracking框架中的第一部分:样本的採集和扩充部分。

在開始代码学习的前面,你须要知道的理论知识參见论文:Real-time Compressive Tracking。理论理解能够參见我的博客:http://blog.csdn.net/ikerpeng/article/details/19826409 。

这个模块中你须要知道一个主要的概念:代码里面几个变量指的是什么。上一张图:

或许你如今还不知道他们是什么,直接贴代码了。

相信有我的凝视你一定会懂的。

头文件 sampleRect.h

#pragma once
#include <opencv2\opencv.hpp>
#include <vector>
using namespace cv;
using namespace std; class sampleRect
{
public:
sampleRect(void);//构造函数,初始化以下的rOuterpositive
~sampleRect(void); private:
int rOuterpositive;//这个设定的是正负样本的边界。在这个边界里面的就是正样本,外面的就是负样本。 void sampleRect0(Mat& _image, Rect& _objectPatch, float _rInner, float _rOuter, int _maxSampleNum, vector<Rect>& _sampleRect );
//这个函数最重要,它是用来扩充正负样本的。 他通过设定_rInner,_rOuter两个边界,选出的样本是_rInner里面的,_rOuter外面的。 也就是说_rInner>_rOuter.
//在进行正样本扩充的时候_rOuter=0._rInner=上面那个边界rOuterpositive;产生负样本的时候_rOuter=rOuterpositive。里面的參数在实现的时候说明
void sampleRect1(Mat& _image, Rect& _objectPatch, float _srw, vector<Rect>& _sampleRect );//这个函数是要扩充待检測的样本的 };
#include "sampleRect.h"
#include <math.h>
#include<iostream> sampleRect::sampleRect()
{
int rOuterpositive=4;//这里我们都是以矩形框的左上角的点为參照的,若是要扩充的样本的这个点离目标位置的这个点的距离在4个像素以内则定义为正样本。否则为负。
}
sampleRect::~sampleRect()
{ }
void sampleRect::sampleRect0(Mat& _image, Rect& _objectPatch, float _rInner, float _rOuter, int _maxSampleNum, vector<Rect>& _sampleRect )
{
/*
Arguments:
-_image: processing frame
-_objectBox: recent object position
-_rInner: inner sampling radius
-_rOuter: Outer sampling radius
-_maxSampleNum: maximal number of sampled images
-_sampleRect: Storing the rectangle coordinates of the sampled images.
*/
int rowsz=_image.rows-_objectPatch.height-1;//y方向上取值的最大范围
int colsz= _image.cols- _objectPatch.width-1;
float rInnerSq=_rInner*_rInner;//这个相当于是外圆的距离的平方,为的是和后面的dist作比較的。小于这个值就在圆里面
float rOuterSq=_rOuter*_rOuter;//同上,大于这个值就在选择的范围里面了。详细參见示意图1。
int dist;
RNG rng; //以下这个是为了要确定选出来的patch快的范围(事实上是左上角点的坐标的范围)
int minrow = max(0,(int)_objectPatch.y-(int)_rInner);//计算出的结果是y坐标的最小取值。相当于一个圆外接矩形的最上面的那个点。详细參见示意图1
int maxrow = min(rowsz-1, (int)_objectPatch.y+(int)_rInner);//计算出的结果是y坐标的最大取值,相当于一个圆外接矩形的最以下的那个点。 int mincol = max(0,(int)_objectPatch.x-(int)_rInner);//计算出的结果是x坐标的最小取值,相当于一个圆外接矩形的最左边的那个点。
int maxcol = min(colsz,(int)_objectPatch.x+(int)_rInner);//计算出的结果是x坐标的最大取值,相当于一个圆外接矩形的最右边的那个点。 float prob=_maxSampleNum/(maxrow-minrow+1)/(maxcol-mincol+1);//这个值的设定是为了将扩充正负样本的函数统一到一个函数里面
// 由于负样本的扩充时设定的最外面的边界_rInner是比較大的。 那就非常产生非常多的样本,这个时候我们就通过这个值的推断随机的选择一些
//_maxSampleNum设置是非常大的。上面的式子是相当于除以后面两个的乘积啦。 int r,c; //横纵坐标
int i=0; //记住vector的尺寸
_sampleRect.clear();// 非常重要。開始的时候一定清空样本存储的地方
Rect rect(0,0,0,0); //用来记录每个被选到的样本块 for ( r=minrow; r<=maxrow; r++)
{
for( c=mincol; c<=maxcol; c++)
{
dist=(_objectPatch.y-r)*(_objectPatch.y-r)+(_objectPatch.x-c)*(_objectPatch.x-c);//到目标点的距离
if((rng.uniform(0., 1.)<prob)&&(dist<=rInnerSq)&&(dist>=rOuterSq))
//这里就是将正负样本的扩充统一起来了。对于正样本,由于满足的范围小,prob一定>1。所以满足条件的都要。
//对于负样本来说,rng.uniform(0., 1.)<prob)就不一定成立,所以是随机的保存所产生的满足要求的负样本。 //(附加说明一点,_maxSampleNum这里设置的是10000.一般一个图像至少320*240,所以prob=1/6左右。也就是保存了所有负样本的1/6左右)
{
rect.x=c;//满足上面的条件以后就採集样本并存储到_sampleRect中
rect.y=r;
rect.height=_objectPatch.height;
rect.width=_objectPatch.width;
_sampleRect.push_back(rect);
i++;
} }
}
_sampleRect.resize(i);//这个操作是要确定这个vector的尺寸。 由于vector给你分配的空间往往是大于你所要的。 } //以下的操作基本上是一样的了,其作用是在上一帧的位置附近生成一些待检測的样本。这被觉得是可能的目标出现的位置。
void sampleRect::sampleRect1(Mat& _image, Rect& _objectPatch, float _srw, vector<Rect>& _sampleRect )
{
int rowsz=_image.rows-_objectPatch.height-1;
int colsz =_image.cols -_objectPatch.width-1;
int radSq= _srw*_srw; int dist;
Rect rect; int minrow=max(0,(int)_objectPatch.y-(int)_srw);
int maxrow=min(rowsz,(int)_objectPatch.y+(int)_srw);
int mincol =max(0,(int)_objectPatch.x-(int)_srw);
int maxcol =max(colsz,(int)_objectPatch.x+(int)_srw); int r,c;
int i=0; for( r=minrow; r<=maxrow;r++)
{
for ( c=mincol; c<=maxcol; c++)
{
dist=(_objectPatch.y-r)*(_objectPatch.y-r)+(_objectPatch.x-c)*(_objectPatch.x-c);
if(dist<=radSq )//不在须要prob来限制量了,以下都是一样的了。 {
rect.x=c;
rect.y=r;
rect.height=_objectPatch.height;
rect.width=_objectPatch.width;
_sampleRect.push_back(rect);
i++; } }
}
_sampleRect.resize(i);
}
//本节搞定。

我是实实在在的刚開始学习的人,发现问题请指正啊!谢谢!

压缩跟踪(CT)代码具体学习_模块1(样本的採集和扩充)的更多相关文章

  1. webpack学习_模块热替换(Hot Module Peaplacement)

    模块热替换(Hot Module Replacement 或 HMR) 是webpack提供的最有用的功能之一.允许在u女性是更新各种模块,而无需进行完全刷新. 启用HMR 承接之前的代码 webpa ...

  2. 高速压缩跟踪(fast compressive tracking)(CT)算法分析

    本文为原创,转载请注明出处:http://blog.csdn.net/autocyz/article/details/44490009 Fast Compressive Tracking (高速压缩跟 ...

  3. 压缩跟踪Compressive Tracking

    好了,学习了解了稀疏感知的理论知识后,终于可以来学习<Real-Time Compressive Tracking>这个paper介绍的感知跟踪算法了.自己英文水平有限,理解难免出错,还望 ...

  4. python-Day5-深入正则表达式--冒泡排序-时间复杂度 --常用模块学习:自定义模块--random模块:随机验证码--time & datetime模块

    正则表达式   语法:             mport re #导入模块名 p = re.compile("^[0-9]") #生成要匹配的正则对象 , ^代表从开头匹配,[0 ...

  5. 『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍

    一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feat ...

  6. python学习——常用模块

    在学习常用模块时我们应该知道模块和包是什么,关于模块和包会单独写一篇随笔,下面先来了解有关在python中的几个常用模块. 一.什么是模块 常见的场景:一个模块就是一个包含了python定义和声明的文 ...

  7. 浅谈android代码保护技术_ 加固

    浅谈android代码保护技术_加固 导语 我们知道Android中的反编译工作越来越让人操作熟练,我们辛苦的开发出一个apk,结果被人反编译了,那心情真心不舒服.虽然我们混淆,做到native层,但 ...

  8. jQuery源代码学习_工具函数_type

    jquery源代码学习_工具函数_type jquery里面有一个很重要的工具函数,$.type函数用来判断类型,今天写这篇文章,是来回顾type函数的设计思想,深入理解. 首先来看一下最终结果: 上 ...

  9. 从别人的代码中学习golang系列--01

    自己最近在思考一个问题,如何让自己的代码质量逐渐提高,于是想到整理这个系列,通过阅读别人的代码,从别人的代码中学习,来逐渐提高自己的代码质量.本篇是这个系列的第一篇,我也不知道自己会写多少篇,但是希望 ...

随机推荐

  1. Reshaper cannot resolve symbol

    问题 不知道出了什么问题,在代码视图发现有些关键词显示为红色,并且Reshaper提示消息为Reshaper cannot resolve symbol XXX ,但编辑不会报错. 虽然不影响使用,但 ...

  2. Spring整合Redis时报错:java.util.NoSuchElementException: Unable to validate object

    我在Spring整合Redis时报错,我是犯了一个很低级的错误! 我设置了Redis的访问密码,在Spring的配置文件却没有配置密码这一项,配置上密码后,终于不报错了!

  3. 【iOS开发】如何用 Swift 语言进行LBS应用的开发?

    本文分为三部分,第一部分详解用Swift语言开发LBS应用,并给出完整的示例与源代码:第二部分介绍如何申请LBS密钥,第三部分是综合示例查看,扫描二维码即可查看示例demo. 第一部分 使用Swift ...

  4. iOS 设置 UIWebView UserAgent

    NSString *userAgent = [[[UIWebView alloc] init] stringByEvaluatingJavaScriptFromString:@"naviga ...

  5. ios 开发 ping

    在win 或 mac系统的终端下都有方便的ping命令来检测网络的连通性! 在iOS上可以使用苹果封装好的工具来开发ping连接测试 SimplePing 下载 1. 主要接口 //初始化一个地址 - ...

  6. 微信小程序 - 怎样合理设计小程序

    假如我们无意中,把腾讯地图或者高德地图的管理Key删了! 关于定位的一切相关模块就都会报废! 接着呢?客户会找你,对你公司信任感下降,一系列问题接踵而来 最好的办法就是先预留key后台管理 “随时可以 ...

  7. Cocos2d-X中的声音和音效

    在玩游戏时都会有各种游戏音,如启动游戏时会有背景音,胜利或者失败会有一些音效.在Cocos2d-X中能够使用CocosDenshion实现各种声音 在使用CocosDenshion之前须要在程序中加入 ...

  8. editcap的使用

    editcap.exe -h Editcap (Wireshark) (v2.-gf42a0d2b6c) Edit and/or translate the format of capture fil ...

  9. VB数组的清除

    在一个程序中,同一数组只能用Dim语句定义一次.但有时可能需要清除数组的内容或对数组重新定义,这可以用:Erase语句来实现. 格式:Erase(数组名)[,(数组名)] 功能:用于重新初始化静态数组 ...

  10. Java的PriorityQueue

    转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6538654.html  优先队列实质上就是数据结构中的最小堆,而堆从概念图来看类似于一棵二叉树,从具体实现来说 ...