Getting in Line 

Computer networking requires that the computers in the network be linked.

This problem considers a ``linear" network in which the computers are chained together so that each is connected to exactly two others except for the two computers on the ends of the chain which are connected to only one other computer. A picture is shown below. Here the computers are the black dots and their locations in the network are identified by planar coordinates (relative to a coordinate system not shown in the picture).

Distances between linked computers in the network are shown in feet.

For various reasons it is desirable to minimize the length of cable used.

Your problem is to determine how the computers should be connected into such a chain to minimize the total amount of cable needed. In the installation being constructed, the cabling will run beneath the floor, so the amount of cable used to join 2 adjacent computers on the network will be equal to the distance between the computers plus 16 additional feet of cable to connect from the floor to the computers and provide some slack for ease of installation.

The picture below shows the optimal way of connecting the computers shown above, and the total length of cable required for this configuration is (4+16)+ (5+16) + (5.83+16) + (11.18+16) = 90.01 feet.

Input

The input file will consist of a series of data sets. Each data set will begin with a line consisting of a single number indicating the number of computers in a network. Each network has at least 2 and at most 8 computers. A value of 0 for the number of computers indicates the end of input.

After the initial line in a data set specifying the number of computers in a network, each additional line in the data set will give the coordinates of a computer in the network. These coordinates will be integers in the range 0 to 150. No two computers are at identical locations and each computer will be listed once.

Output

The output for each network should include a line which tells the number of the network (as determined by its position in the input data), and one line for each length of cable to be cut to connect each adjacent pair of computers in the network. The final line should be a sentence indicating the total amount of cable used.

In listing the lengths of cable to be cut, traverse the network from one end to the other. (It makes no difference at which end you start.) Use a format similar to the one shown in the sample output, with a line of asterisks separating output for different networks and with distances in feet printed to 2 decimal places.

Sample Input

6
5 19
55 28
38 101
28 62
111 84
43 116
5
11 27
84 99
142 81
88 30
95 38
3
132 73
49 86
72 111
0

Sample Output

**********************************************************
Network #1
Cable requirement to connect (5,19) to (55,28) is 66.80 feet.
Cable requirement to connect (55,28) to (28,62) is 59.42 feet.
Cable requirement to connect (28,62) to (38,101) is 56.26 feet.
Cable requirement to connect (38,101) to (43,116) is 31.81 feet.
Cable requirement to connect (43,116) to (111,84) is 91.15 feet.
Number of feet of cable required is 305.45.
**********************************************************
Network #2
Cable requirement to connect (11,27) to (88,30) is 93.06 feet.
Cable requirement to connect (88,30) to (95,38) is 26.63 feet.
Cable requirement to connect (95,38) to (84,99) is 77.98 feet.
Cable requirement to connect (84,99) to (142,81) is 76.73 feet.
Number of feet of cable required is 274.40.
**********************************************************
Network #3
Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.

就是求最小生成树,可以回溯+搜索,因为n<=8所以可以暴力枚举,我在边界条件卡了很久。

#include<iostream>
#include<algorithm>
#include<iomanip>
#include<cstring>
#include<cmath>
#include<cstdio> using namespace std; int num[10];
int num1[10];
int n; class P
{
public:
int x,y;
}point[10]; double dis()
{
double sum=0;
for(int i=1;i<n;i++)
{
sum=sum+sqrt((point[num[i]].x-point[num[i-1]].x)*(point[num[i]].x-point[num[i-1]].x)+(point[num[i]].y-point[num[i-1]].y)*(point[num[i]].y-point[num[i-1]].y))+16;
}
return sum;
} int main()
{
int k=0;
while(cin>>n&&n)
{
memset(point,0,sizeof(point));
memset(num,0,sizeof(num));
memset(num1,0,sizeof(num1));
int i;
for(i=0;i<n;i++)
cin>>point[i].x>>point[i].y;
for(i=0;i<n;i++)
num[i]=i;
double minlen=dis();
memcpy(num1,num,sizeof(num));
while(next_permutation(num,num+n))
{
if(dis()<minlen)
{
memcpy(num1,num,sizeof(num));
minlen=dis();
}
}
cout<<"**********************************************************"<<endl;
cout<<"Network #"<<++k<<endl;
for(i=1;i<n;i++)
{
double d=sqrt((point[num1[i]].x-point[num1[i-1]].x)*(point[num1[i]].x-point[num1[i-1]].x)+(point[num1[i]].y-point[num1[i-1]].y)*(point[num1[i]].y-point[num1[i-1]].y));
printf("Cable requirement to connect (%d,%d) to (%d,%d) is %.2lf feet.\n",point[num1[i-1]].x,point[num1[i-1]].y,point[num1[i]].x,point[num1[i]].y,d+16);
//cout<<"Cable requirement to connect ("<<point[num1[i-1]].x<<","<<point[num1[i-1]].y<<") to ("<<point[num1[i]].x<<","<<point[num1[i]].y<<") is ";
//cout<<fixed<<setprecision(2)<<d+16<<" feet."<<endl;
}
printf("Number of feet of cable required is %.2lf.\n",minlen);
//cout<<"Number of feet of cable required is "<<fixed<<setprecision(2)<<minlen<<"."<<endl;
}
return 0;
} 因为第一个排列可能最优化,我忘记给他赋值了,找了好久的bug。

Getting in Line UVA 216的更多相关文章

  1. CDQ分治入门 + 例题 Arnooks's Defensive Line [Uva live 5871]

    CDQ分治入门 简介 CDQ分治是一种特别的分治方法,它由CDQ(陈丹琦)神犇于09国家集训队作业中首次提出,因此得名.CDQ分治属于分治的一种.它一般只能处理非强制在线的问题,除此之外这个算法作为某 ...

  2. UVA 216 - Getting in Line

    216 - Getting in Line Computer networking requires that the computers in the network be linked. This ...

  3. uva 216 Getting in Line 最短路,全排列暴力做法

    题目给出离散的点,要求求出一笔把所有点都连上的最短路径. 最多才8个点,果断用暴力求. 用next_permutation举出全排列,计算出路程,记录最短路径. 这题也可以用dfs回溯暴力,但是用最小 ...

  4. UVa 216 Getting in Line【枚举排列】

    题意:给出n个点的坐标,(2<=n<=8),现在要使得这n个点连通,问最小的距离的和 因为n很小,所以可以直接枚举这n个数的排列,算每一个排列的距离的和, 保留下距离和最小的那个排列就可以 ...

  5. Boxes in a Line UVA - 12657

      You have n boxes in a line on the table numbered 1...n from left to right. Your task is to simulat ...

  6. Boxes in a Line UVA - 12657 (双向链表)

    题目链接:https://vjudge.net/problem/UVA-12657 题目大意:输入n,m  代表有n个盒子 每个盒子最开始按1~n排成一行  m个操作, 1 x y  :把盒子x放到y ...

  7. 开源一套原创文本处理工具:Java+Bat脚本实现自动批量处理对账单工具

    原创/朱季谦 这款工具是笔者在2018年初开发完成的,时隔两载,偶然想起这款小工具,于是,决定将其开源,若有人需要做类似Java批处理实现整理文档的工具,可参考该工具逻辑思路来实现. 该工具是运行在w ...

  8. uva 11174 Stand in a Line

    // uva 11174 Stand in a Line // // 题目大意: // // 村子有n个村民,有多少种方法,使村民排成一条线 // 使得没有人站在他父亲的前面. // // 解题思路: ...

  9. UVA Getting in Line

    题目例如以下: Getting in Line  Computer networking requires that the computers in the network be linked. T ...

随机推荐

  1. Android项目更换开发环境时出现的 java.lang.VerifyError 异常解决办法

    from://http://blog.csdn.net/wudiwo/article/details/7548451 项目是从同事的电脑上直接拷贝过来的,项目里面的jar包是在项目跟下libs里面存放 ...

  2. byte[]数组的正则表达式搜索 z

    在byte[]数组的特定位置进行正则表达式匹配. 为了从硬盘上搜索特定类型的文件,需要根据文件的特征值进行匹配. 对于已掌握文件结构的文件,采用hard-code的方式进行匹配:这样速度快: 对于未掌 ...

  3. ibatis.net:第二天,Hello,World ?

    背景 本文的内容全部来自于官方的文档,此处仅仅为了强化记忆. 项目结构 Properties.config <?xml version="1.0" encoding=&quo ...

  4. 如何生成安全的密码 Hash:MD5, SHA, PBKDF2, BCrypt 示例

    密码 Hash 值的产生是将用户所提供的密码通过使用一定的算法计算后得到的加密字符序列.在 Java 中提供很多被证明能有效保证密码安全的 Hash 算法实现,我将在这篇文章中讨论其中的部分算法. 需 ...

  5. mybatis大于号,小于号,去地址符,单引号,双引号转义说明

    在mybatis中,使用到大于号,小于号,与在SQL编辑器中是不一样的. SELECT * FROM test WHERE 1 = 1 AND start_date <= CURRENT_DAT ...

  6. 推荐ThinkJS

    之前在学习node.js时,写过一些例子和demo,偶尔也会有人发email问我node.js的一些问题.因为是二三年前写的东西,当时使用的第三方库和node.js的版本跟最新的可能有所不同甚至比较大 ...

  7. AsyncTask中各个函数详细的调用过程,初步实现异步任务

     AsyncTask内部类可能会产生内存泄露的问题 解决上述内部类可能引起的内存泄露问题的方法 将AsyncTask或者Thread的子类作为单独的类文件,不持有Activity的强引用 将Async ...

  8. .NET培训 | JAVA培训 | 最课程

    最课程(www.zuikc.com) 软件开发培训,在线软件培训的创新者!我们的创新在于: 1:一次购买,终身服务.每个最课程学员都会分配一位专职教师及一位监管教师,点对点跟进课程进度,直到您学会课程 ...

  9. 简明 MongoDB 入门教程

    MongoDB 是免费开源的跨平台 NoSQL 数据库,命名源于英文单词 humongous,意思是「巨大无比」,可见开发组对 MongoDB 的定位.与关系型数据库不同,MongoDB 的数据以类似 ...

  10. Jackson 转换JSON,SpringMVC ajax 输出,当值为null或者空不输出字段@JsonInclude

    当我们提供接口的时候, Ajax 返回的时候,当对象在转换 JSON (序列化)的时候,值为null或者为“” 的字段还是输出来了.看上去不优雅. 现在我叙述三种方式来控制这种情况. 注解的方式( @ ...