Getting in Line UVA 216
| Getting in Line |
Computer networking requires that the computers in the network be linked.
This problem considers a ``linear" network in which the computers are chained together so that each is connected to exactly two others except for the two computers on the ends of the chain which are connected to only one other computer. A picture is shown below. Here the computers are the black dots and their locations in the network are identified by planar coordinates (relative to a coordinate system not shown in the picture).
Distances between linked computers in the network are shown in feet.

For various reasons it is desirable to minimize the length of cable used.
Your problem is to determine how the computers should be connected into such a chain to minimize the total amount of cable needed. In the installation being constructed, the cabling will run beneath the floor, so the amount of cable used to join 2 adjacent computers on the network will be equal to the distance between the computers plus 16 additional feet of cable to connect from the floor to the computers and provide some slack for ease of installation.
The picture below shows the optimal way of connecting the computers shown above, and the total length of cable required for this configuration is (4+16)+ (5+16) + (5.83+16) + (11.18+16) = 90.01 feet.

Input
The input file will consist of a series of data sets. Each data set will begin with a line consisting of a single number indicating the number of computers in a network. Each network has at least 2 and at most 8 computers. A value of 0 for the number of computers indicates the end of input.
After the initial line in a data set specifying the number of computers in a network, each additional line in the data set will give the coordinates of a computer in the network. These coordinates will be integers in the range 0 to 150. No two computers are at identical locations and each computer will be listed once.
Output
The output for each network should include a line which tells the number of the network (as determined by its position in the input data), and one line for each length of cable to be cut to connect each adjacent pair of computers in the network. The final line should be a sentence indicating the total amount of cable used.
In listing the lengths of cable to be cut, traverse the network from one end to the other. (It makes no difference at which end you start.) Use a format similar to the one shown in the sample output, with a line of asterisks separating output for different networks and with distances in feet printed to 2 decimal places.
Sample Input
6
5 19
55 28
38 101
28 62
111 84
43 116
5
11 27
84 99
142 81
88 30
95 38
3
132 73
49 86
72 111
0
Sample Output
**********************************************************
Network #1
Cable requirement to connect (5,19) to (55,28) is 66.80 feet.
Cable requirement to connect (55,28) to (28,62) is 59.42 feet.
Cable requirement to connect (28,62) to (38,101) is 56.26 feet.
Cable requirement to connect (38,101) to (43,116) is 31.81 feet.
Cable requirement to connect (43,116) to (111,84) is 91.15 feet.
Number of feet of cable required is 305.45.
**********************************************************
Network #2
Cable requirement to connect (11,27) to (88,30) is 93.06 feet.
Cable requirement to connect (88,30) to (95,38) is 26.63 feet.
Cable requirement to connect (95,38) to (84,99) is 77.98 feet.
Cable requirement to connect (84,99) to (142,81) is 76.73 feet.
Number of feet of cable required is 274.40.
**********************************************************
Network #3
Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.
就是求最小生成树,可以回溯+搜索,因为n<=8所以可以暴力枚举,我在边界条件卡了很久。
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<cstring>
#include<cmath>
#include<cstdio> using namespace std; int num[10];
int num1[10];
int n; class P
{
public:
int x,y;
}point[10]; double dis()
{
double sum=0;
for(int i=1;i<n;i++)
{
sum=sum+sqrt((point[num[i]].x-point[num[i-1]].x)*(point[num[i]].x-point[num[i-1]].x)+(point[num[i]].y-point[num[i-1]].y)*(point[num[i]].y-point[num[i-1]].y))+16;
}
return sum;
} int main()
{
int k=0;
while(cin>>n&&n)
{
memset(point,0,sizeof(point));
memset(num,0,sizeof(num));
memset(num1,0,sizeof(num1));
int i;
for(i=0;i<n;i++)
cin>>point[i].x>>point[i].y;
for(i=0;i<n;i++)
num[i]=i;
double minlen=dis();
memcpy(num1,num,sizeof(num));
while(next_permutation(num,num+n))
{
if(dis()<minlen)
{
memcpy(num1,num,sizeof(num));
minlen=dis();
}
}
cout<<"**********************************************************"<<endl;
cout<<"Network #"<<++k<<endl;
for(i=1;i<n;i++)
{
double d=sqrt((point[num1[i]].x-point[num1[i-1]].x)*(point[num1[i]].x-point[num1[i-1]].x)+(point[num1[i]].y-point[num1[i-1]].y)*(point[num1[i]].y-point[num1[i-1]].y));
printf("Cable requirement to connect (%d,%d) to (%d,%d) is %.2lf feet.\n",point[num1[i-1]].x,point[num1[i-1]].y,point[num1[i]].x,point[num1[i]].y,d+16);
//cout<<"Cable requirement to connect ("<<point[num1[i-1]].x<<","<<point[num1[i-1]].y<<") to ("<<point[num1[i]].x<<","<<point[num1[i]].y<<") is ";
//cout<<fixed<<setprecision(2)<<d+16<<" feet."<<endl;
}
printf("Number of feet of cable required is %.2lf.\n",minlen);
//cout<<"Number of feet of cable required is "<<fixed<<setprecision(2)<<minlen<<"."<<endl;
}
return 0;
} 因为第一个排列可能最优化,我忘记给他赋值了,找了好久的bug。
Getting in Line UVA 216的更多相关文章
- CDQ分治入门 + 例题 Arnooks's Defensive Line [Uva live 5871]
CDQ分治入门 简介 CDQ分治是一种特别的分治方法,它由CDQ(陈丹琦)神犇于09国家集训队作业中首次提出,因此得名.CDQ分治属于分治的一种.它一般只能处理非强制在线的问题,除此之外这个算法作为某 ...
- UVA 216 - Getting in Line
216 - Getting in Line Computer networking requires that the computers in the network be linked. This ...
- uva 216 Getting in Line 最短路,全排列暴力做法
题目给出离散的点,要求求出一笔把所有点都连上的最短路径. 最多才8个点,果断用暴力求. 用next_permutation举出全排列,计算出路程,记录最短路径. 这题也可以用dfs回溯暴力,但是用最小 ...
- UVa 216 Getting in Line【枚举排列】
题意:给出n个点的坐标,(2<=n<=8),现在要使得这n个点连通,问最小的距离的和 因为n很小,所以可以直接枚举这n个数的排列,算每一个排列的距离的和, 保留下距离和最小的那个排列就可以 ...
- Boxes in a Line UVA - 12657
You have n boxes in a line on the table numbered 1...n from left to right. Your task is to simulat ...
- Boxes in a Line UVA - 12657 (双向链表)
题目链接:https://vjudge.net/problem/UVA-12657 题目大意:输入n,m 代表有n个盒子 每个盒子最开始按1~n排成一行 m个操作, 1 x y :把盒子x放到y ...
- 开源一套原创文本处理工具:Java+Bat脚本实现自动批量处理对账单工具
原创/朱季谦 这款工具是笔者在2018年初开发完成的,时隔两载,偶然想起这款小工具,于是,决定将其开源,若有人需要做类似Java批处理实现整理文档的工具,可参考该工具逻辑思路来实现. 该工具是运行在w ...
- uva 11174 Stand in a Line
// uva 11174 Stand in a Line // // 题目大意: // // 村子有n个村民,有多少种方法,使村民排成一条线 // 使得没有人站在他父亲的前面. // // 解题思路: ...
- UVA Getting in Line
题目例如以下: Getting in Line Computer networking requires that the computers in the network be linked. T ...
随机推荐
- 利用HTTP Cache来优化网站
原文地址: http://www.cnblogs.com/cocowool/archive/2011/08/22/2149929.html 对于网站来说,速度是第一位的.用户总是讨厌等待,面对加载的V ...
- ASIHTTPRequestErrorDomain Code=5
ASIHttpRequest解析带空格的URL时 出错!!!(已解决) 用的是post请求 URL 地址是: http://111.234.51.56/login_member.pl?time=201 ...
- C#编程(十四)----------构造函数
原文链接:http://blog.csdn.net/shanyongxu/article/details/46501683 构造函数 所谓的构造函数就是和类名重名的且没有返回值的方法. class P ...
- runOnUiThread更新主线程
更新UI采用Handle+Thread,需要发送消息,接受处理消息(在回调方法中处理),比较繁琐.除此之外,还可以使用runOnUiThread方法. 利用Activity.runOnUiThre ...
- Java删除List和Set集合中元素
今天在做项目时,需要删除List和Set中的某些元素,当时使用边遍历,边删除的方法,却报了以下异常: ConcurrentModificationException 为了以后不忘记,使用烂笔头把它记录 ...
- Office Web Apps 错误日志
前言 最近一直在用Office Web Apps,使用过程会有各种各样的错误,众所周知,sharepoint的错误都在15/Logs下面保存错误日志,那么OWA呢? 经过查找,发现Office Web ...
- AsyncTask中各个函数详细的调用过程,初步实现异步任务
AsyncTask内部类可能会产生内存泄露的问题 解决上述内部类可能引起的内存泄露问题的方法 将AsyncTask或者Thread的子类作为单独的类文件,不持有Activity的强引用 将Async ...
- 如何解决rar文件解压缩失败
附件经常会是一系列的压缩文件,下载是默认文件名是一个随机数字.因而下载完会出现压缩文件解压缩失败解决方法:下载时重命名为带一定顺序的文件名,如文件1,文件2,文件3等 如何解决单个文件解压失败?论坛中 ...
- Reader 与 Guava MultiReader
Reader是Java IO体系里字符处理读取流的基本类,代码如下 /* * %W% %E% * * Copyright (c) 2006, Oracle and/or its affiliates. ...
- verilog语法实例学习(8)
常用的时序电路介绍 在电平敏感的锁存器时钟信号有效期(高电平)期间,锁存器的状态随着输入信号的变化而变化.有时候,我们需要存储器的状态在一个时钟周期只改变一次,这个时候就用到了触发器.触发器(flip ...