Getting in Line 

Computer networking requires that the computers in the network be linked.

This problem considers a ``linear" network in which the computers are chained together so that each is connected to exactly two others except for the two computers on the ends of the chain which are connected to only one other computer. A picture is shown below. Here the computers are the black dots and their locations in the network are identified by planar coordinates (relative to a coordinate system not shown in the picture).

Distances between linked computers in the network are shown in feet.

For various reasons it is desirable to minimize the length of cable used.

Your problem is to determine how the computers should be connected into such a chain to minimize the total amount of cable needed. In the installation being constructed, the cabling will run beneath the floor, so the amount of cable used to join 2 adjacent computers on the network will be equal to the distance between the computers plus 16 additional feet of cable to connect from the floor to the computers and provide some slack for ease of installation.

The picture below shows the optimal way of connecting the computers shown above, and the total length of cable required for this configuration is (4+16)+ (5+16) + (5.83+16) + (11.18+16) = 90.01 feet.

Input

The input file will consist of a series of data sets. Each data set will begin with a line consisting of a single number indicating the number of computers in a network. Each network has at least 2 and at most 8 computers. A value of 0 for the number of computers indicates the end of input.

After the initial line in a data set specifying the number of computers in a network, each additional line in the data set will give the coordinates of a computer in the network. These coordinates will be integers in the range 0 to 150. No two computers are at identical locations and each computer will be listed once.

Output

The output for each network should include a line which tells the number of the network (as determined by its position in the input data), and one line for each length of cable to be cut to connect each adjacent pair of computers in the network. The final line should be a sentence indicating the total amount of cable used.

In listing the lengths of cable to be cut, traverse the network from one end to the other. (It makes no difference at which end you start.) Use a format similar to the one shown in the sample output, with a line of asterisks separating output for different networks and with distances in feet printed to 2 decimal places.

Sample Input

6
5 19
55 28
38 101
28 62
111 84
43 116
5
11 27
84 99
142 81
88 30
95 38
3
132 73
49 86
72 111
0

Sample Output

**********************************************************
Network #1
Cable requirement to connect (5,19) to (55,28) is 66.80 feet.
Cable requirement to connect (55,28) to (28,62) is 59.42 feet.
Cable requirement to connect (28,62) to (38,101) is 56.26 feet.
Cable requirement to connect (38,101) to (43,116) is 31.81 feet.
Cable requirement to connect (43,116) to (111,84) is 91.15 feet.
Number of feet of cable required is 305.45.
**********************************************************
Network #2
Cable requirement to connect (11,27) to (88,30) is 93.06 feet.
Cable requirement to connect (88,30) to (95,38) is 26.63 feet.
Cable requirement to connect (95,38) to (84,99) is 77.98 feet.
Cable requirement to connect (84,99) to (142,81) is 76.73 feet.
Number of feet of cable required is 274.40.
**********************************************************
Network #3
Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.

就是求最小生成树,可以回溯+搜索,因为n<=8所以可以暴力枚举,我在边界条件卡了很久。

#include<iostream>
#include<algorithm>
#include<iomanip>
#include<cstring>
#include<cmath>
#include<cstdio> using namespace std; int num[10];
int num1[10];
int n; class P
{
public:
int x,y;
}point[10]; double dis()
{
double sum=0;
for(int i=1;i<n;i++)
{
sum=sum+sqrt((point[num[i]].x-point[num[i-1]].x)*(point[num[i]].x-point[num[i-1]].x)+(point[num[i]].y-point[num[i-1]].y)*(point[num[i]].y-point[num[i-1]].y))+16;
}
return sum;
} int main()
{
int k=0;
while(cin>>n&&n)
{
memset(point,0,sizeof(point));
memset(num,0,sizeof(num));
memset(num1,0,sizeof(num1));
int i;
for(i=0;i<n;i++)
cin>>point[i].x>>point[i].y;
for(i=0;i<n;i++)
num[i]=i;
double minlen=dis();
memcpy(num1,num,sizeof(num));
while(next_permutation(num,num+n))
{
if(dis()<minlen)
{
memcpy(num1,num,sizeof(num));
minlen=dis();
}
}
cout<<"**********************************************************"<<endl;
cout<<"Network #"<<++k<<endl;
for(i=1;i<n;i++)
{
double d=sqrt((point[num1[i]].x-point[num1[i-1]].x)*(point[num1[i]].x-point[num1[i-1]].x)+(point[num1[i]].y-point[num1[i-1]].y)*(point[num1[i]].y-point[num1[i-1]].y));
printf("Cable requirement to connect (%d,%d) to (%d,%d) is %.2lf feet.\n",point[num1[i-1]].x,point[num1[i-1]].y,point[num1[i]].x,point[num1[i]].y,d+16);
//cout<<"Cable requirement to connect ("<<point[num1[i-1]].x<<","<<point[num1[i-1]].y<<") to ("<<point[num1[i]].x<<","<<point[num1[i]].y<<") is ";
//cout<<fixed<<setprecision(2)<<d+16<<" feet."<<endl;
}
printf("Number of feet of cable required is %.2lf.\n",minlen);
//cout<<"Number of feet of cable required is "<<fixed<<setprecision(2)<<minlen<<"."<<endl;
}
return 0;
} 因为第一个排列可能最优化,我忘记给他赋值了,找了好久的bug。

Getting in Line UVA 216的更多相关文章

  1. CDQ分治入门 + 例题 Arnooks's Defensive Line [Uva live 5871]

    CDQ分治入门 简介 CDQ分治是一种特别的分治方法,它由CDQ(陈丹琦)神犇于09国家集训队作业中首次提出,因此得名.CDQ分治属于分治的一种.它一般只能处理非强制在线的问题,除此之外这个算法作为某 ...

  2. UVA 216 - Getting in Line

    216 - Getting in Line Computer networking requires that the computers in the network be linked. This ...

  3. uva 216 Getting in Line 最短路,全排列暴力做法

    题目给出离散的点,要求求出一笔把所有点都连上的最短路径. 最多才8个点,果断用暴力求. 用next_permutation举出全排列,计算出路程,记录最短路径. 这题也可以用dfs回溯暴力,但是用最小 ...

  4. UVa 216 Getting in Line【枚举排列】

    题意:给出n个点的坐标,(2<=n<=8),现在要使得这n个点连通,问最小的距离的和 因为n很小,所以可以直接枚举这n个数的排列,算每一个排列的距离的和, 保留下距离和最小的那个排列就可以 ...

  5. Boxes in a Line UVA - 12657

      You have n boxes in a line on the table numbered 1...n from left to right. Your task is to simulat ...

  6. Boxes in a Line UVA - 12657 (双向链表)

    题目链接:https://vjudge.net/problem/UVA-12657 题目大意:输入n,m  代表有n个盒子 每个盒子最开始按1~n排成一行  m个操作, 1 x y  :把盒子x放到y ...

  7. 开源一套原创文本处理工具:Java+Bat脚本实现自动批量处理对账单工具

    原创/朱季谦 这款工具是笔者在2018年初开发完成的,时隔两载,偶然想起这款小工具,于是,决定将其开源,若有人需要做类似Java批处理实现整理文档的工具,可参考该工具逻辑思路来实现. 该工具是运行在w ...

  8. uva 11174 Stand in a Line

    // uva 11174 Stand in a Line // // 题目大意: // // 村子有n个村民,有多少种方法,使村民排成一条线 // 使得没有人站在他父亲的前面. // // 解题思路: ...

  9. UVA Getting in Line

    题目例如以下: Getting in Line  Computer networking requires that the computers in the network be linked. T ...

随机推荐

  1. Android提交数据到服务器的两种方式四种方法

    本帖最后由 yanghe123 于 2012-6-7 09:58 编辑 Android应用开发中,会经常要提交数据到服务器和从服务器得到数据,本文主要是给出了利用http协议采用HttpClient方 ...

  2. 商业web漏扫神器——appscan篇

      版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/dongfei2033/article/details/78472507 很快,已经到了三大商业漏 ...

  3. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

  4. ios之如何读取plist

    - (NSDictionary*)contactsInfoFromPlistNamed:(NSString*)plistName { NSString *path = [[NSBundle mainB ...

  5. Eclipse中输入变量会自动补全上屏的解决方法

    我自己在启动Eclipse代码补全后输入感觉确实爽多了,但是每次输入变量后一按下空格,编译器会自己帮你写一个很蛋疼的名字,比如你输入了:String mStr后按下空格,它就变成了mString,十分 ...

  6. Notification详解(含工具类)

                                                                     昨天一天只写了两篇文章,效率超低.追其原因呢,其实我一直在研究noti ...

  7. IIS(互联网信息服务)

    ylbtech-Miscellaneos:IIS(互联网信息服务) IIS是Internet Information Services的缩写,意为互联网信息服务,是由微软公司提供的基于运行Micros ...

  8. ARM、X86/Atom、MIPS、PowerPC

    关注Android的时候,有一些CPU架构方面的术语知识,主要有:ARM.X86/Atom.MIPS.PowerPC1)ARM/MIPS/PowerPC均是基于精简指令集(RISC,Reduced I ...

  9. EF和LINQ 调用存储过程

    好久没有更新文章了,最近项目比较忙都没什么时间来分享最近的问题. 今天遇到一个超级傻逼的问题.C#中调用存储过程,自己code也10来年了,这应该是很简单的问题了.今天有2个新的api,一个只有1个参 ...

  10. [leetcode]Validate Binary Search Tree @ Python

    原题地址:https://oj.leetcode.com/problems/validate-binary-search-tree/ 题意:检测一颗二叉树是否是二叉查找树. 解题思路:看到二叉树我们首 ...