题目大意:将$1$到$n(1<n\leqslant6000)$分成若干组数,要求每组数的和均为质数,若存在一种分配方式,输出每个数所在的组的编号,有多组解输出任意一组解,若不存在,输出$-1$

题解:根据这一题的结论分[CF735D]Taxes

卡点:未判断奇数分成$3$个质数的情况

C++ Code:

#include <cstdio>
#define maxn 6010
int n;
int bel[maxn], idx;
inline bool isp(int x) {
for (int i = 2; i * i <= x; i++) {
if (x % i == 0) return false;
}
return true;
}
void solve(int x) {
if (isp(x)) {
idx++;
for (int i = n; i; i--) {
if (x >= i && !bel[i]) {
bel[i] = idx;
x -= i;
}
}
return ;
}
if (x & 1) {
if (isp(x - 2)) solve(2), solve(x - 2);
else solve(3), solve(x - 3);
return ;
}
for (int i = x + 1 >> 1; i > 1; i--) if (isp(i) && isp(x - i)) {
solve(i), solve(x - i);
return ;
} }
int main() {
scanf("%d", &n);
solve(n * (n + 1) >> 1);
for (int i = 1; i <= n; i++) {
printf("%d", bel[i]);
putchar(i == n ? '\n' : ' ');
}
return 0;
}

  

[CF45G]Prime Problem的更多相关文章

  1. 【题解】CF45G Prime Problem

    [题解]CF45G Prime Problem 哥德巴赫板子题? \(\frac{n(n+1)}{2}\)若是质数,则不需要分了. 上式 若是奇数,那么拆成2和另一个数. 上式 若是偶数吗,直接\(O ...

  2. CF45G Prime Problem 构造+数论

    正解:构造+数论 解题报告: 传送门! maya这题好神仙啊我jio得,,,反正我当初听的时候是没有太懂的,,, 首先这题你要知道一些必要的数学姿势 比如哥德巴赫猜想巴拉巴拉的 然后直接讲题趴QAQ ...

  3. CF45G

    考虑哥德巴赫猜想:一个偶数可以被拆分两个质数. 所以我们考虑如果不是偶数的话,我们拆分成\((2,m-2)\)或者\((3,del(m - 3))\) 如果是偶数的话\(del(m)\),我们直接枚举 ...

  4. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  5. Project Euler Problem7

    10001st prime Problem 7 By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see t ...

  6. EularProject 41:最长的n位Pandigital素数问题

    Pandigital prime Problem 41 We shall say that an n-digit number is pandigital if it makes use of all ...

  7. [ML从入门到入门] 支持向量机:从SVM的推导过程到SMO的收敛性讨论

    前言 支持向量机(Support Vector Machine,SVM)在70年代由苏联人 Vladimir Vapnik 提出,主要用于处理二分类问题,也就是研究如何区分两类事物. 本文主要介绍支持 ...

  8. Prime Ring Problem

    Problem Description A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ... ...

  9. hdoj 1016 Prime Ring Problem

    Problem Description A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ... ...

随机推荐

  1. redis之哨兵(Sentinel)

    Redis-Sentinel是redis官方推荐的高可用性解决方案,当用redis作master-slave的高可用时,如果master本身宕机,redis本身或者客户端都没有实现主从切换的功能. 而 ...

  2. Node.js(二)----安装Cnpm

    ---恢复内容开始--- 1.安装CNPM 因为天草的 Great Wall 导致下载速度龟速....所以安装Cnpm淘宝镜像 2.命令 2.1 如果版本合适 设置镜像地址 npm config se ...

  3. python爬虫之有道在线翻译

    今天初学了python这门课 老师简单的讲解了一下 python的安装环境,配置环境变量,当前主流Python使用的是3.x版本, 下午简单的讲解了python的起源,发展以及在各个方面的应用 然后晚 ...

  4. python3 练习题100例 (二十九)猴子吃桃问题

    题目内容: 猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个第二天早上又将剩下的桃子吃掉一半,又多吃了一个.以后每天早上都吃了前一天剩下的一半零一个.到第n天(<1<n< ...

  5. HDU 1495 非常可乐 (只是转了个弯的广搜题)

    N - 非常可乐 =========================================================================================== ...

  6. ABAP CDS ON HANA-(1)CDSビュー作成

    Basic CDS View Creation Open HANA Studio. Goto ABAP perspective. Open the project, Navigate to the p ...

  7. 20145202马超《网络对抗》Exp3免杀 进阶

    木马化正常软件,如通过改变机器指令.实现可免杀免防火墙提示的后门. 继上次实验3所做的代码在主函数里面加上一行调用就可以 改各种属性,这里我参考了郝浩同学的博客 最后我还是遇到了问题 后来发现虽然有那 ...

  8. 判断电脑CPU硬件支不支持64位

    你可以在注册表中查看: HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\Environment\PROCESSO ...

  9. ASP.NET MVC 使用jquery.form.js 异步上传 在IE下返回值被变为下载的解决办法

    错误记录: <script type="text/javascript"> $(function () { $(document).off("ajaxSend ...

  10. 软件测试面试题-适合零基础和工作多年的re

    软件测试面试题整理,可以看看:适合零基础和多年工作经验跳槽的人 有些问题会深挖,就不在整理了 详看图片: