BZOJ4347 POI2016Nim z utrudnieniem(博弈+动态规划)
由nim游戏的结论,显然等价于去掉一些数使剩下的数异或和为0。
暴力的dp比较显然,设f[i][j][k]为前i堆移走j堆(模意义下)后异或和为k的方案数。注意到总石子数量不超过1e7,按ai从小到大排序,这样k的枚举范围就不会超过2ai,于是复杂度O(md)。
注意空间卡的非常紧,连滚动都开不下,改为留下的有j堆(模意义下)可能比较方便,存一下j=d-1时的数组,对j=1~d-1倒序转移完后再特判j=0即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 500010
#define P 1000000007
int n,m,a[N],u[N<<],f[][<<],tmp[<<];
inline void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4347.in","r",stdin);
freopen("bzoj4347.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i]=read();
sort(a+,a+n+);
int t=;
for (int i=;i<=;i++)
{
if (t<i) t=t<<|;
u[i]=t;
}
f[][]=;
for (int i=;i<=n;i++)
{
memcpy(tmp,f[m-],u[a[i]]+<<);
for (int j=m-;j>=;j--)
for (int k=;k<=u[a[i]];k++)
inc(f[j][k],f[j-][k^a[i]]);
for (int k=;k<=u[a[i]];k++)
inc(f[][k],tmp[k^a[i]]);
}
cout<<(f[n%m][]-(n%m==)+P)%P;
return ;
}
BZOJ4347 POI2016Nim z utrudnieniem(博弈+动态规划)的更多相关文章
- bzoj 4347 [POI2016]Nim z utrudnieniem DP
4347: [POI2016]Nim z utrudnieniem Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 733 Solved: 281[Su ...
- BZOJ4347 : [POI2016]Nim z utrudnieniem
将石子从小到大排序,然后DP. 设$f[i][j][k]$表示考虑了前$i$堆的石子,当前扔掉的堆数模$d$为$j$,没有扔掉的石子的异或和为$k$的方案数. 因为石子排过序,所以转移的复杂度为$O( ...
- 【bzoj4347】[POI2016]Nim z utrudnieniem dp
题解: 感觉我简直是个傻逼 把题目数据范围看错了.. 然后觉得这题非常的不可做 sigmaai <1e7.... 这题的dp是非常简单的,注意到d很小 f[i][j][k]表示前i个,%d为j, ...
- Luogu5363 SDOI2019移动金币(博弈+动态规划)
容易想到可以转化为一个有m堆石子,石子总数不超过n-m的阶梯博弈.阶梯博弈的结论是相当于只考虑奇数层石子的nim游戏. nim和不为0不好算,于是用总方案数减掉nim和为0的方案数.然后考虑dp,按位 ...
- [luogu2964][USACO09NOV][硬币的游戏A Coin Game] (博弈+动态规划)
题目描述 Farmer John's cows like to play coin games so FJ has invented with a new two-player coin game c ...
- [POI2016]Nim z utrudnieniem
Description A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],...,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取.谁先不能操作,谁 ...
- 解题:POI 2016 Nim z utrudnieniem
题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...
- Atcoder Grand Contest 026 (AGC026) F - Manju Game 博弈,动态规划
原文链接www.cnblogs.com/zhouzhendong/AGC026F.html 前言 太久没有发博客了,前来水一发. 题解 不妨设先手是 A,后手是 B.定义 \(i\) 为奇数时,\(a ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
随机推荐
- BootStrap的动态模态框及静态模态框
1.要用bootStrap这个框架就必须要重载它的class类,也就是说class要一样 代码如下: 有疑问的可以在下面留言,欢迎大家一起交流 1.1动态模态框 <!DOCTYPE html&g ...
- JS数组push一个对象
这个是正确的数据添加对象 var dypieArr = []; var dyArr = []; var arrStr = ''; for(var i = 0; i < dataStreet.le ...
- PHP生成一个六位数的邀请码
PHP生成一个六位数的邀请码 $unique_no = substr(base_convert(md5(uniqid(md5(microtime(true)),true)), 16, 10), 0, ...
- 使用virtual安装Windows系列操作系统总结
最近在安装Windows操作系统的过程中,发现总是报错,无法安装成功,后来经过不断地摸索,发现根本的问题在于镜像,所以在以后的大文件传输下载后,一定要校验其MD5值是否与源文件一致,需要的朋友可以联系 ...
- web学习第一天
学习web心得 表格 table,表单 form,跑马灯效果 marquee,导入背景图片<img src="图片路径"> 第一天学的不是很难,作业也相对来说比较简单, ...
- python读取大文件和普通文件
读取文件,最常见的方式是: with open('filename', 'r', encoding = 'utf-8') as f: for line in f.readlines(): do_som ...
- Leecode刷题之旅-C语言/python-53.最大子序和
/* * @lc app=leetcode.cn id=53 lang=c * * [53] 最大子序和 * * https://leetcode-cn.com/problems/maximum-su ...
- [Cracking the Coding Interview] 4.5 Validate BST
Implement a function to check if a binary tree is a binary search tree. 这道题很经典,让我们判断一棵树是不是二叉查找树.但是首先 ...
- SELECT(データ取得)
WHERE 句は.満たすべき条件を指定することにより選択される行数を制限します. WHERE 句は.SELECT 命令と同様に OPEN CURSOR.UPDATE.および DELETE 命令でも使用 ...
- UVA 1175 - Ladies' Choice
1175 - Ladies' Choice 链接 稳定婚姻问题. 代码: #include<bits/stdc++.h> using namespace std; typedef long ...