由nim游戏的结论,显然等价于去掉一些数使剩下的数异或和为0。

  暴力的dp比较显然,设f[i][j][k]为前i堆移走j堆(模意义下)后异或和为k的方案数。注意到总石子数量不超过1e7,按ai从小到大排序,这样k的枚举范围就不会超过2ai,于是复杂度O(md)。

  注意空间卡的非常紧,连滚动都开不下,改为留下的有j堆(模意义下)可能比较方便,存一下j=d-1时的数组,对j=1~d-1倒序转移完后再特判j=0即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 500010
#define P 1000000007
int n,m,a[N],u[N<<],f[][<<],tmp[<<];
inline void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4347.in","r",stdin);
freopen("bzoj4347.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i]=read();
sort(a+,a+n+);
int t=;
for (int i=;i<=;i++)
{
if (t<i) t=t<<|;
u[i]=t;
}
f[][]=;
for (int i=;i<=n;i++)
{
memcpy(tmp,f[m-],u[a[i]]+<<);
for (int j=m-;j>=;j--)
for (int k=;k<=u[a[i]];k++)
inc(f[j][k],f[j-][k^a[i]]);
for (int k=;k<=u[a[i]];k++)
inc(f[][k],tmp[k^a[i]]);
}
cout<<(f[n%m][]-(n%m==)+P)%P;
return ;
}

BZOJ4347 POI2016Nim z utrudnieniem(博弈+动态规划)的更多相关文章

  1. bzoj 4347 [POI2016]Nim z utrudnieniem DP

    4347: [POI2016]Nim z utrudnieniem Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 733  Solved: 281[Su ...

  2. BZOJ4347 : [POI2016]Nim z utrudnieniem

    将石子从小到大排序,然后DP. 设$f[i][j][k]$表示考虑了前$i$堆的石子,当前扔掉的堆数模$d$为$j$,没有扔掉的石子的异或和为$k$的方案数. 因为石子排过序,所以转移的复杂度为$O( ...

  3. 【bzoj4347】[POI2016]Nim z utrudnieniem dp

    题解: 感觉我简直是个傻逼 把题目数据范围看错了.. 然后觉得这题非常的不可做 sigmaai <1e7.... 这题的dp是非常简单的,注意到d很小 f[i][j][k]表示前i个,%d为j, ...

  4. Luogu5363 SDOI2019移动金币(博弈+动态规划)

    容易想到可以转化为一个有m堆石子,石子总数不超过n-m的阶梯博弈.阶梯博弈的结论是相当于只考虑奇数层石子的nim游戏. nim和不为0不好算,于是用总方案数减掉nim和为0的方案数.然后考虑dp,按位 ...

  5. [luogu2964][USACO09NOV][硬币的游戏A Coin Game] (博弈+动态规划)

    题目描述 Farmer John's cows like to play coin games so FJ has invented with a new two-player coin game c ...

  6. [POI2016]Nim z utrudnieniem

    Description A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],...,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取.谁先不能操作,谁 ...

  7. 解题:POI 2016 Nim z utrudnieniem

    题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...

  8. Atcoder Grand Contest 026 (AGC026) F - Manju Game 博弈,动态规划

    原文链接www.cnblogs.com/zhouzhendong/AGC026F.html 前言 太久没有发博客了,前来水一发. 题解 不妨设先手是 A,后手是 B.定义 \(i\) 为奇数时,\(a ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. sqlachemy详解

    实习期老大让我学Python...学了很久了好吗,不过确实对其中的一些原理性的东西还不够深入. 比如今天要说的sqlachemy,结合网上做些总结吧 ORM 全称 Object Relational ...

  2. springmvc的类型转换器converter

    这个convter类型转换是器做什么用的? 他是做类型转换的,或者数据格式化处理.可以把数据在送到controller之前做处理.变成你想要的格式或者类型.方便我们更好的使用. 比如说你从前台传过来一 ...

  3. 在Liunx上搭建FTP并配置用户权限

    伴随着.Net Core的开源,公司前几天上了新的Liunx服务器,我在前几篇文章中介绍了如何搭建环境以及部署.Net Core应用. 然后,今天客户和我说想自己给网站做推广,需要用FTP链接我们的服 ...

  4. 怎么用Python Flask模板jinja2在网页上打印显示16进制数?

    问题:Python列表(或者字典等)数据本身是10进制,现在需要以16进制输出显示在网页上 解决: Python Flask框架中 模板jinja2的If 表达式和过滤器 假设我有一个字典index, ...

  5. ctf题目writeup(3)

    题目地址: https://www.ichunqiu.com/battalion 1. 这个是个mp3,给的校验是为了下载下来的. 下来之后丢进audicity中 放大后根据那个音块的宽度来确定是 . ...

  6. 预防跨站脚本(xss)

    对xss的防护方法结合在两点上输入和输出,一是严格控制用户表单的输入,验证所有输入数据,有效监测到攻击,go web表单中涉及到.二是对所有输出的数据进行处理,防止已成功注入的脚本在浏览器端运行. 在 ...

  7. C语言实现简易扫雷

    首先,写代码之前要将整体思路写出来: 扫雷游戏:1.需要两个二维数组,一个用来展示,一个用来放雷; 2.整体骨架在代码中都有注释说明; 3.游戏难度比较简单,适合初学者观看,如果有大佬看明白,可以指点 ...

  8. POJ-2421-Constructing Roads(最小生成树 普利姆)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26694   Accepted: 11720 Description The ...

  9. C#的委托Delegate

    一.委托基础 1.什么是委托 委托(Delegate) 是存有对某个方法的引用的一种引用类型变量,用关键字delegate申明,实现相同返回值和参数的函数的动态调用,提供了对方法的抽象. 委托(Del ...

  10. Bootstrap4用法

    #Bootstrap4 ## 网格系统- .col- 针对所有设备- .col-sm- 平板 - 屏幕宽度等于或大于 576px- .col-md- 桌面显示器 - 屏幕宽度等于或大于 768px)- ...