由nim游戏的结论,显然等价于去掉一些数使剩下的数异或和为0。

  暴力的dp比较显然,设f[i][j][k]为前i堆移走j堆(模意义下)后异或和为k的方案数。注意到总石子数量不超过1e7,按ai从小到大排序,这样k的枚举范围就不会超过2ai,于是复杂度O(md)。

  注意空间卡的非常紧,连滚动都开不下,改为留下的有j堆(模意义下)可能比较方便,存一下j=d-1时的数组,对j=1~d-1倒序转移完后再特判j=0即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 500010
#define P 1000000007
int n,m,a[N],u[N<<],f[][<<],tmp[<<];
inline void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4347.in","r",stdin);
freopen("bzoj4347.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i]=read();
sort(a+,a+n+);
int t=;
for (int i=;i<=;i++)
{
if (t<i) t=t<<|;
u[i]=t;
}
f[][]=;
for (int i=;i<=n;i++)
{
memcpy(tmp,f[m-],u[a[i]]+<<);
for (int j=m-;j>=;j--)
for (int k=;k<=u[a[i]];k++)
inc(f[j][k],f[j-][k^a[i]]);
for (int k=;k<=u[a[i]];k++)
inc(f[][k],tmp[k^a[i]]);
}
cout<<(f[n%m][]-(n%m==)+P)%P;
return ;
}

BZOJ4347 POI2016Nim z utrudnieniem(博弈+动态规划)的更多相关文章

  1. bzoj 4347 [POI2016]Nim z utrudnieniem DP

    4347: [POI2016]Nim z utrudnieniem Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 733  Solved: 281[Su ...

  2. BZOJ4347 : [POI2016]Nim z utrudnieniem

    将石子从小到大排序,然后DP. 设$f[i][j][k]$表示考虑了前$i$堆的石子,当前扔掉的堆数模$d$为$j$,没有扔掉的石子的异或和为$k$的方案数. 因为石子排过序,所以转移的复杂度为$O( ...

  3. 【bzoj4347】[POI2016]Nim z utrudnieniem dp

    题解: 感觉我简直是个傻逼 把题目数据范围看错了.. 然后觉得这题非常的不可做 sigmaai <1e7.... 这题的dp是非常简单的,注意到d很小 f[i][j][k]表示前i个,%d为j, ...

  4. Luogu5363 SDOI2019移动金币(博弈+动态规划)

    容易想到可以转化为一个有m堆石子,石子总数不超过n-m的阶梯博弈.阶梯博弈的结论是相当于只考虑奇数层石子的nim游戏. nim和不为0不好算,于是用总方案数减掉nim和为0的方案数.然后考虑dp,按位 ...

  5. [luogu2964][USACO09NOV][硬币的游戏A Coin Game] (博弈+动态规划)

    题目描述 Farmer John's cows like to play coin games so FJ has invented with a new two-player coin game c ...

  6. [POI2016]Nim z utrudnieniem

    Description A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],...,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取.谁先不能操作,谁 ...

  7. 解题:POI 2016 Nim z utrudnieniem

    题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...

  8. Atcoder Grand Contest 026 (AGC026) F - Manju Game 博弈,动态规划

    原文链接www.cnblogs.com/zhouzhendong/AGC026F.html 前言 太久没有发博客了,前来水一发. 题解 不妨设先手是 A,后手是 B.定义 \(i\) 为奇数时,\(a ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. 微信小程序navigator无法跳转情况

    情况有三种 跳转的页面没有在app.json中注册 跳转的路径不正确 以上两种在命令行(console)中都会提示 跳转的页面在TabBar中,需要将open-type属性是设置为switchTab

  2. xpath技术解析xm文件(php)

    1.结合php dom技术的学习,得出一个结论:php dom技术可以跨层取出节点,但是不能保持层次关系,使用xpath可以很好地解决问题. *** xpath技术的核心思想:迅速简洁的定位你需要查找 ...

  3. 为什么我用了$().height()还是对不齐呢?

    有一个这样的需求:有两个显示内容的框,要使他们高度一致,因为他们存放的内容多少和结构不一样,左边内容少,右边内容多.这就导致了右边会比左边高,解决方法就是超出部分用滚轮显示,那这时就先要调整右边的高度 ...

  4. dns文件

    1.dns简介 dns为域名解析系统,当本地浏览器输入域名访问网站时,如果本地host中没有配置域名与IP的对应关系,那么域名信息将会被发送到dns服务器上,由dns服务器将域名解析为IP(过程较为复 ...

  5. python2.7练习小例子(二十九)

        29):1.题目:按相反的顺序输出列表的值. #!/usr/bin/python # -*- coding: UTF-8 -*- a = ['one', 'two', 'three'] for ...

  6. ArrayMap java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Object[]

    错误堆栈: java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Object[] at android ...

  7. ubuntu apt-get 使用代理设置,坑爹。。

    网上流传的export http_proxy=http://yourproxyaddress:proxyport是行不通的,虽然改了之后wget一类的可以用.当然去改.bashrc也不会有效果. 真正 ...

  8. Android4.0系统以上程序不出现菜单键的问题解决

    去掉targetSdkVersion 或改为targetSdkVersion =13或更小.. 不改targetSdkVersion的办法:在onCreate() 里setContentView()之 ...

  9. Percona-Tookit工具包之pt-find

      Preface       We used to use "find" command in linux or AIX when we need to get a certai ...

  10. Python-学习-import语句导入模块

    简单的学习一下调用外部的模块文件. 在Python中,模块是一种组织形式,它将彼此有关系的Pyrhon 代码组织到一个个独立的文件当中,模块可以包含可执行代码,函数,和类或者是这些东西的组合. 当我们 ...