GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5064    Accepted Submission(s): 1818

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1
11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427
 
Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source
 
Recommend
wangye   |   We have carefully selected several similar problems for you:  1689 1691 1692 1697 1696 
 

参考: http://blog.csdn.net/xiaotaoqibao/article/details/5772486

思路:

题目意思不难已知给定k,x,y求 1<=a<=x 1<=b<=y 中满足 gcd(a,b)=k 的(a,b)对数。(注意数对是无序的)。 1<=x,y<=10w, 0<=k<=10w

题目有比较恶心的一点,数据有k==0的,这时显然答案是0,没有2个数的gcd为0。

首先,gcd是没啥用的。因为约掉gcd后两个数互质。于是我们可以让x/=k y/=k并且假设 x<=y

然后题目变成了 2个数分别在区间[1..x]和[1..y]中的互质数有多少对。

大体思路:

枚举[1..y]中每个数i 判断[1..min(x,i)]中有多少数与i互质,统计个数。(注意,枚举的是比较大的区间[1..y])。

显然如果i是质数,则[1..min(x,i)]中与i互质的个数是全体的个数或者i-1个。(取决于x和i的大小)。

当i不是质数时,i分解质因数后,质因数的次数不影响结果。我们看另外那个区间有多少个和i不互质(减一下就好了),于是我们只要看另外那个区间中有多少个数是i质因数的倍数就好了。

区间[1..w]中 p的倍数 显然有 w/p个。

我们枚举i的质因数利用容斥原理:

看另外那个区间有多少个数与i不互质。

容斥原理的具体如下:

区间中与i不互质的个数 = (区间中i的每个质因数的倍数个数)-(区间中i的每两个质因数乘积的倍数)+(区间中i的每3个质因数的成绩的倍数个数)-(区间中i的每4个质因数的乘积)+...

于是问题变成了统计每个数的不同质因数的个数而忽略次数。这个可以用筛法。具体做法如下:

对每个数保存一个真质因数的列表。初始每个列表的长度为0。然后从2开始,分别检查每个数的列表长度,如果列表长度不为0,则这个数是合数,跳过;如果这个长度为0,则我们找到了一个质数,同时再把这个数的倍数(不包含本身)的列表里加入这个数。

这样筛一次下来,我们保存了每个数的真质因数列表,问题得到解决,还要注意结果用要用__int64。

 ///218MS    7256K    1385 B    G++
//容斥原理+欧拉函数
#include<stdio.h>
#include<string.h>
#include<string.h>
#define N 100005
int ss[N][]; //质因数
int num[N]; //不同质因数个数
__int64 euler[N]; //euler[i]:[1,i]的欧拉数和
void init()
{
memset(ss,,sizeof(ss));
memset(euler,,sizeof(euler));
euler[]=;
for(int i=;i<N;i++){
if(!euler[i]){ //质数
for(int j=i;j<N;j+=i){
if(!euler[j]) euler[j]=j;
euler[j]=euler[j]*(i-)/i;
ss[j][num[j]++]=i; //记录质因数
}
}
euler[i]+=euler[i-];
//printf("*%d %d\n",i,euler[i]);
}
}
__int64 dfs(int a,int b,int q) //容斥原理
{
__int64 res=;
for(int i=a;i<num[q];i++){
res+=b/ss[q][i]-dfs(i+,b/ss[q][i],q);
}
return res;
}
int main(void)
{
int t,cas=;
int a,b,c,d,k;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==){
printf("Case %d: 0\n",cas++);continue;
}
b/=k;
d/=k; //题目变成[1,b]与[1,d]间的互质的数有多少对
if(b>d){
int temp=b;b=d;d=temp;
}
__int64 res=euler[b];
for(int i=b+;i<=d;i++){
res+=b-dfs(,b,i);
}
printf("Case %d: %I64d\n",cas++,res);
}
return ;
}

hdu 1695 GCD (欧拉函数+容斥原理)的更多相关文章

  1. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

  2. HDU 1695 GCD (欧拉函数,容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  3. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  4. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. hdu 1695 GCD 欧拉函数 + 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K]  和 [L ...

  6. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  7. [hdu1695] GCD ——欧拉函数+容斥原理

    题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1 ...

  8. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  9. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. python3.5怎么打包编译

    问题:用Python开发的小工具有时需要编译打包为Windows(*.exe).Mac等操作系统下的可执行性文件以供非程序员使用. 解决方案: 一.py2exe 目前只支持到Python3.4,暂不支 ...

  2. Linux 学习第一天

    一.开源许可: GNU GPL(GNU General Public License,GNU 通用公共许可证): 开源许可特点:1.使用自由 2.传播自由 3.修改自由 4.衍生品自由 二.源代码安装 ...

  3. python核心编程2 第七章 练习

    7-4. 建立字典. 给定两个长度相同的列表,比如说,列表[1, 2, 3,...]和['abc', 'def','ghi',...],用这两个列表里的所有数据组成一个字典,像这样:{1:'abc', ...

  4. C语言Windows程序开发—Windows窗口样式与常用控件样式【第04天】

    (一)Windows窗口(MDICLIENT)样式介绍 /* Windows窗口样式 */ WS_BORDER //带有边框的窗口 WS_CAPTION //带有标题栏的窗口 WS_CHILD //子 ...

  5. 嵌入式框架Zorb Framework搭建六:定时器的实现

    我是卓波,我是一名嵌入式工程师,我万万没想到我会在这里跟大家吹牛皮. 嵌入式框架Zorb Framework搭建过程 嵌入式框架Zorb Framework搭建一:嵌入式环境搭建.调试输出和建立时间系 ...

  6. R语言学习笔记(十五):获取文件和目录信息

    file.info() 参数是表示文件名称的字符串向量,函数会给出每个文件的大小.创建时间.是否为目录等信息. > file.info("z.txt") size isdir ...

  7. java 获取图片大小(尺寸)

    1,获取本地图片大小(尺寸) File picture=new File(strSrc);BufferedImage sourceImg=ImageIO.read(new FileInputStrea ...

  8. WebService第一天——概述与入门操作

    一.概述 1.是什么 Web service是一个平台独立的,低耦合的,自包含的.基于可编程的web的应用程序,可使用开放的XML(标准通用标记语言下的一个子集)标准来描述.发布.发现.协调和配置这些 ...

  9. WPF 构建无外观(Lookless)控件

    原文:WPF 构建无外观(Lookless)控件 构建一个用户可以使用Template属性设置外观的WPF控件需要以下几步 1.继承自System.Windows.Controls.Control 2 ...

  10. Mac系统下安装Homebrew后无法使用brew命令,-bash: brew: command not found

    使用如下命令: sudo vim .bash_profile 然后输入以下代码: export PATH=/usr/local/bin:$PATH 再使用以下命令使配置生效: source .bash ...