GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5064    Accepted Submission(s): 1818

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1
11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427
 
Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source
 
Recommend
wangye   |   We have carefully selected several similar problems for you:  1689 1691 1692 1697 1696 
 

参考: http://blog.csdn.net/xiaotaoqibao/article/details/5772486

思路:

题目意思不难已知给定k,x,y求 1<=a<=x 1<=b<=y 中满足 gcd(a,b)=k 的(a,b)对数。(注意数对是无序的)。 1<=x,y<=10w, 0<=k<=10w

题目有比较恶心的一点,数据有k==0的,这时显然答案是0,没有2个数的gcd为0。

首先,gcd是没啥用的。因为约掉gcd后两个数互质。于是我们可以让x/=k y/=k并且假设 x<=y

然后题目变成了 2个数分别在区间[1..x]和[1..y]中的互质数有多少对。

大体思路:

枚举[1..y]中每个数i 判断[1..min(x,i)]中有多少数与i互质,统计个数。(注意,枚举的是比较大的区间[1..y])。

显然如果i是质数,则[1..min(x,i)]中与i互质的个数是全体的个数或者i-1个。(取决于x和i的大小)。

当i不是质数时,i分解质因数后,质因数的次数不影响结果。我们看另外那个区间有多少个和i不互质(减一下就好了),于是我们只要看另外那个区间中有多少个数是i质因数的倍数就好了。

区间[1..w]中 p的倍数 显然有 w/p个。

我们枚举i的质因数利用容斥原理:

看另外那个区间有多少个数与i不互质。

容斥原理的具体如下:

区间中与i不互质的个数 = (区间中i的每个质因数的倍数个数)-(区间中i的每两个质因数乘积的倍数)+(区间中i的每3个质因数的成绩的倍数个数)-(区间中i的每4个质因数的乘积)+...

于是问题变成了统计每个数的不同质因数的个数而忽略次数。这个可以用筛法。具体做法如下:

对每个数保存一个真质因数的列表。初始每个列表的长度为0。然后从2开始,分别检查每个数的列表长度,如果列表长度不为0,则这个数是合数,跳过;如果这个长度为0,则我们找到了一个质数,同时再把这个数的倍数(不包含本身)的列表里加入这个数。

这样筛一次下来,我们保存了每个数的真质因数列表,问题得到解决,还要注意结果用要用__int64。

 ///218MS    7256K    1385 B    G++
//容斥原理+欧拉函数
#include<stdio.h>
#include<string.h>
#include<string.h>
#define N 100005
int ss[N][]; //质因数
int num[N]; //不同质因数个数
__int64 euler[N]; //euler[i]:[1,i]的欧拉数和
void init()
{
memset(ss,,sizeof(ss));
memset(euler,,sizeof(euler));
euler[]=;
for(int i=;i<N;i++){
if(!euler[i]){ //质数
for(int j=i;j<N;j+=i){
if(!euler[j]) euler[j]=j;
euler[j]=euler[j]*(i-)/i;
ss[j][num[j]++]=i; //记录质因数
}
}
euler[i]+=euler[i-];
//printf("*%d %d\n",i,euler[i]);
}
}
__int64 dfs(int a,int b,int q) //容斥原理
{
__int64 res=;
for(int i=a;i<num[q];i++){
res+=b/ss[q][i]-dfs(i+,b/ss[q][i],q);
}
return res;
}
int main(void)
{
int t,cas=;
int a,b,c,d,k;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==){
printf("Case %d: 0\n",cas++);continue;
}
b/=k;
d/=k; //题目变成[1,b]与[1,d]间的互质的数有多少对
if(b>d){
int temp=b;b=d;d=temp;
}
__int64 res=euler[b];
for(int i=b+;i<=d;i++){
res+=b-dfs(,b,i);
}
printf("Case %d: %I64d\n",cas++,res);
}
return ;
}

hdu 1695 GCD (欧拉函数+容斥原理)的更多相关文章

  1. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

  2. HDU 1695 GCD (欧拉函数,容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  3. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  4. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. hdu 1695 GCD 欧拉函数 + 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K]  和 [L ...

  6. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  7. [hdu1695] GCD ——欧拉函数+容斥原理

    题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1 ...

  8. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  9. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. 路由器基础配置之ppp封装下的pap,chap认证

    我们将以上面的拓扑图完成本次实验,路由器的默认封装为HDLC,要求为把路由器全被更改为ppp封装,并在router3与router4之间用pap认证,在router4与router5之间用chap认证 ...

  2. (转)手游应该怎么做 UI 设计?

    之前一直做互动设计,在UI上有一些积累. 转战手游后发现,有着标准.互动方式.用户行为等等与常规大屏UI设计的不同,但是在设计流程,思考方式上是一样的. 以目前项目中一个界面为例(未完成版本)来说一下 ...

  3. thinkphp验证码实现。

    作为我大天朝的程序员,如果不会点thinkphp框架确实有点说不过去了(虽然作为菜鸟的我才入坑没几个月).不过不会也没关系,很简单的一个php框架.今天为大家介绍的是thinkphp如何实现验证码的功 ...

  4. python函数的返回值

    返回值:return1.没有返回值    #不写return    #只写return:结束一个函数    #return None2.有一个返回值    #可以返回任何数据类型    #只要返回就可 ...

  5. sort函数

    做项目的时候,排序是一种经常要用到的操作.如果每次都自己写个冒泡之类的O(n^2)排序,不但程序容易超时,而且浪费宝贵的时间,还很有可能写错.STL里面有个sort函数,可以直接对数组排序,复杂度为n ...

  6. PHP.37-TP框架商城应用实例-后台13-商品管理-扩展分类的添加、显示【数据分组】、搜索分类【多对多】

    商品扩展分类 需求:一件商品能有多个扩展分类,搜索任何一个分类都能搜出该商品 建表[扩展分类表] drop table if exists p39_goods_cat; create table p3 ...

  7. 第5模块闯关Bootstrap

    “行(row)”必须包含在 .container (固定宽度)或 .container-fluid (100% 宽度)中,以便为其赋予合适的排列(aligment)和内补(padding). 通过“行 ...

  8. 7.Mongodb复制(副本集)

    1.复制 什么是复制 复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可用性,并可以保证数据的安全性 复制还允许从硬件故障和服务中断中恢复数据 为什么要复制 数据备份 数据灾难恢复 ...

  9. js学习日记-隐式转换相关的坑及知识

    隐式转换比较是js中绕不过去的坎,就算有几年经验的工程师也很有可能对这块知识不够熟悉.就算你知道使用===比较从而避免踩坑,但是团队其它成员不一定知道有这样或那样的坑,有后端语言经验的人常常会形成一个 ...

  10. Qt Creater 制作汽车仪表盘

    最近项目用到了模拟仪表,网上下载大神编写的按个仪表Meter没有成功 转战 QWt 编译后,在creater中仍然无法使用,只可以在代码中使用 百度说是我编译的版本不对 扔到 开始做自己的 这个用到了 ...