题目网址:http://poj.org/problem?id=2528

题意:

  n(n<=10000)个人依次贴海报,给出每张海报所贴的范围li,ri(1<=li<=ri<=10000000)。

求出最后还能看见多少张海报。

  输入:

 1
 5
 1 4
 2 6
 8 10
 3 4
 7 10
 这题用常规思路解题必定TLE,l,r太大;

通俗点说,离散化就是压缩区间,使原有的长区间映射到新的短区间,但是区间压缩前后的覆盖关系不变。举个例子:

有一条1到10的数轴(长度为9),给定4个区间[2,4] [3,6] [8,10] [6,9],覆盖关系就是后者覆盖前者,每个区间染色依次为 1 2 3 4。

现在我们抽取这4个区间的8个端点,2 4 3 6 8 10 6 9

然后删除相同的端点,这里相同的端点为6,则剩下2 4 3 6 8 10 9

对其升序排序,得2 3 4 6 8 9 10

然后建立映射

2     3     4     6     8     9   10

↓     ↓      ↓     ↓     ↓     ↓     ↓

1     2     3     4     5     6     7

那么新的4个区间为 [1,3] [2,4] [5,7] [4,6],覆盖关系没有被改变。新数轴为1到7,即原数轴的长度从9压缩到6,显然构造[1,7]的线段树比构造[1,10]的线段树更省空间,搜索也更快,但是求解的结果却是一致的。

离散化时有一点必须要注意的,就是必须先剔除相同端点后再排序,这样可以减少参与排序元素的个数,节省时间。

 #include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
#define N 10100
#define M 10000000
bool vis[*N];//标记出现过得海报
int x[*N];
struct T
{
int node,add,l,r;
}tree[M*];
void creat(int l,int r,int k)//建树
{
tree[k].node=;
tree[k].l=l;
tree[k].r=r;
tree[k].add=;
if(l==r)
return;
int mid=(l+r)>>;
creat(l,mid,k<<);
creat(mid+,r,k<<|);
}
void pushdown(int k,int color)//延迟标记
{
int x=k<<;
tree[x].add=;
tree[x+].add=;
tree[x].node=color;
tree[x+].node=color;
tree[k].add=;
tree[k].node=;
}
void Search(int l,int r,int color,int k)//更新线段树
{
if(r<tree[k].l||l>tree[k].r)
return ;
if(l<=tree[k].l&&r>=tree[k].r)
{
tree[k].node=color;
tree[k].add=;
return ;
}
if(tree[k].add)
pushdown(k,tree[k].node);
int mid=(tree[k].l+tree[k].r)>>;
if(r<=mid)
Search(l,r,color,k<<);
else if(l>mid)
Search(l,r,color,k<<|);
else
{
Search(l,mid,color,k<<);
Search(mid+,r,color,k<<|);
}
}
int ans;
void q(int l,int r,int k)//查找不同颜色的区域
{
if(tree[k].add)
{
if(!vis[tree[k].node])
{
ans++;
vis[tree[k].node]=;
}
return ;
}
int mid=(l+r)>>;
q(l,mid,k<<);
q(mid+,r,k<<|);
}
int s(int l,int r,int k)//二分查找
{
int mid;
while(l<=r)
{
mid=(l+r)>>;
if(k<x[mid]) r=mid-;
else if(k>x[mid]) l=mid+;
else return mid;
}
return -;
}
int main()
{
int t,n,i,j;
int l[N],r[N];
scanf("%d",&t);
while(t--)
{
j=;
memset(vis,,sizeof(vis));
scanf("%d",&n);
for(i=;i<n;i++)
{
scanf("%d%d",&l[i],&r[i]);
x[j++]=l[i];
x[j++]=r[i];
}
sort(x,x+j);
int m=;
for(i=;i<j-;i++)
{
if(x[i]==x[i+])
{
m--;
}
else
{
x[i+m]=x[i+];
}
}
j=j+m-;
sort (x,x+j);
/*for(i=0;i<n;i++)
{
printf("%d %d ",s(0,j-1,l[i])+1,s(0,j-1,r[i])+1);
cout<<endl;
}*/
creat(,j,);
for(i=;i<n;i++)
{
Search(s(,j-,l[i])+,s(,j-,r[i])+,i+,);
}
ans=;
q(,j,);
printf("%d\n",ans);
}
return ;
}

poj2528线段树解题报告,离散化+线段树的更多相关文章

  1. 【九度OJ】题目1172:哈夫曼树 解题报告

    [九度OJ]题目1172:哈夫曼树 解题报告 标签(空格分隔): 九度OJ http://ac.jobdu.com/problem.php?pid=1172 题目描述: 哈夫曼树,第一行输入一个数n, ...

  2. [POJ2528]Mayor's posters(离散化+线段树)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 70365   Accepted: 20306 ...

  3. hdu 1754 I Hate It 解题报告(线段树 代码+注释)

    题目链接:传送门 I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. 洛谷 P3924 康娜的线段树 解题报告

    P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的"魔法"产生了浓厚的兴趣,于是小林开始教她\(OI\). 今天康娜学习了一种叫做线段树的神奇魔法,这种 ...

  5. [jzoj 6086] [GDOI2019模拟2019.3.26] 动态半平面交 解题报告 (set+线段树)

    题目链接: https://jzoj.net/senior/#main/show/6086 题目: 题解: 一群数字的最小公倍数就是对它们质因数集合中的每个质因数的指数取$max$然后相乘 这样的子树 ...

  6. 「ZJOI2019」线段树 解题报告

    「ZJOI2019」线段树 听说有人喷这个题简单,然后我就跑去做,然后自闭感++,rp++(雾) 理性分析一波,可以发现最后形成的\(2^k\)个线段树,对应的操作的一个子集,按时间顺序作用到这颗线段 ...

  7. OrzFAng系列–树 解题报告

    题目描述 方方方种下了三棵树,两年后,第二棵树长出了n个节点,其中1号节点是根节点. 给定一个n个点的树 支持两种操作 方方方进行m次操作,每个操作为: (1)给出两个数i,x,将第i个节点的子树中, ...

  8. [BZOJ1984]月下“毛景树”解题报告|树链剖分

    Description 毛毛虫经过及时的变形,最终逃过的一劫,离开了菜妈的菜园. 毛毛虫经过千山万水,历尽千辛万苦,最后来到了小小的绍兴一中的校园里.爬啊爬~爬啊爬~~毛毛虫爬到了一颗小小的“毛景树” ...

  9. 「HNOI2016」树 解题报告

    「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...

随机推荐

  1. PHP 微信错误状态返回码说明

    PHP 微信错误状态返回码说明 返回码说明 返回码    说明 -1   系统繁忙 0    请求成功 40001 验证失败 40002 不合法的凭证类型 40003 不合法的OpenID 40004 ...

  2. Android开发:《Gradle Recipes for Android》阅读笔记(翻译)2.4——更新新版本的Gradle

    问题: 你需要更新应用的Gradle版本. 解决方案: 生成一个新的wrapper,或者直接修改属性文件(.properties). 讨论: Android Studio包含了一个Gradle的分发. ...

  3. python中json操作

    1.写操作.json文件dumps().dump()函数 d = { 'zll': { 'addr': '北京', 'age': 28 }, 'ljj': { 'addr': '北京', 'age': ...

  4. 【BZOJ2770】YY的Treap 结论+线段树

    [BZOJ2770]YY的Treap Description 志向远大的YY小朋友在学完快速排序之后决定学习平衡树,左思右想再加上SY的教唆,YY决定学习Treap.友爱教教父SY如砍瓜切菜般教会了Y ...

  5. 1282 时钟(最小表示法+hash)

    1282 时钟 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 有N个时钟,每个时钟有M个指针,P个刻度.时钟是圆形的,P个刻度均分整 ...

  6. Constructor Acquires, Destructor Releases Resource Acquisition Is Initialization

    w https://zh.wikipedia.org/wiki/RAII RAII要求,资源的有效期与持有资源的对象的生命期严格绑定,即由对象的构造函数完成资源的分配(获取),同时由析构函数完成资源的 ...

  7. 【python】-- Django 中间件、缓存、信号

    Django  中间件.缓存.信号 一. Django  中间件 django 中的中间件(middleware),在django中,中间件其实就是一个类,在请求到来和结束后,django会根据自己的 ...

  8. 基于java mail实现简单的QQ邮箱发送邮件

    刚学习到java邮件相关的知识,先写下这篇博客,方便以后翻阅学习. -----------------------------第一步 开启SMTP服务 在 QQ 邮箱里的 设置->账户里开启 S ...

  9. http-proxy-middleware使用方法和实现原理(源码解读)

    本文主要讲http-proxy-middleware用法和实现原理. 一 简介 http-proxy-middleware用于后台将请求转发给其它服务器. 例如:我们当前主机A为http://loca ...

  10. ActiveMQ 核心概念

    1.Failover 当A无法为客户服务时,系统能够自动地切换,使B能够及时地顶上继续为客户提供服务,且客户感觉不到这个为他提供服务的对象已经更换. 如数据库.应用服务.硬件设备等的失效转移. 2.S ...