UVALive - 4270 Discrete Square Roots (扩展欧几里得)
给出一组正整数$x,n,r$,使得$r^2\equiv x(mod\: n)$,求出所有满足该等式的$r$。
假设有另一个解$r'$满足条件,则有$r^2-r'^2=kn$
因式分解,得$(r+r')(r-r')=kn$
将$n$分解成$a*b$,则有$\left\{\begin{matrix}r+r'=xa\\ r-r'=yb\end{matrix}\right.$
两式相加得$2r=xa+yb$,这是一个二元线性不定方程,可用扩欧求出x的通解。
假设已经求出了$x$的通解$x=x_{0}+k\Delta x$,
由于$r+r'=xa$,所以$r'=xa-r=(x_{0}+k\Delta x)a-r=x_{0}a-r+k(a\Delta x)$,
设$\Delta t=a\Delta x$,则$r'_{0}=((x_{0}a-r)\%\Delta t+\Delta t)\%\Delta t$为$r'$的第一个非负整数解
因此$r'$的通解为$r'=r'_{0}+k\Delta t$
枚举所有的$a,b$,将所有$r'$的可行解插入一个集合里就行了。
#include<bits/stdc++.h> using namespace std;
typedef long long ll;
ll x,n,r,ka;
set<ll> st;
void exgcd(ll a,ll b,ll& x,ll& y,ll& g) {
if(!b)x=,y=,g=a;
else exgcd(b,a%b,y,x,g),y-=x*(a/b);
} void solve(ll a,ll b) {
ll c=*r,x,y,g;
exgcd(a,b,x,y,g);
if(c%g)return;
x*=c/g;
ll dx=abs(b/g);
ll dt=dx*a;
ll t=((a*x-r)%dt+dt)%dt;
for(; t<n; t+=dt)st.insert(t);
} int main() {
while(scanf("%lld%lld%lld",&x,&n,&r)&&x) {
st.clear();
for(ll i=; i*i<=n; ++i)if(n%i==)solve(i,n/i),solve(n/i,i);
printf("Case %lld:",++ka);
for(ll i:st)printf(" %lld",i);
printf("\n");
}
return ;
}
UVALive - 4270 Discrete Square Roots (扩展欧几里得)的更多相关文章
- UVALive 4270 Discrete Square Roots
题目描述: 在已知一个离散平方根的情况下,按照从小到大的顺序输出其他所有的离散平方根. 在模n意义下,非负整数x的离散平方根是满足0<=r<n且r2=x(mod n)的整数r. 解题思路: ...
- UVa 1426 Discrete Square Roots (扩展欧几里德)
题意:给定 x,n,r,满足 r2 ≡ x mod(n) ,求在 0 ~ n 内满足 rr2 ≡ x mod(n) 的所有的 rr. 析:很明显直接是肯定不行了,复杂度太高了. r2 ≡ x mod( ...
- UVA 1426 - Discrete Square Roots(数论)
UVA 1426 - Discrete Square Roots 题目链接 题意:给定X, N. R.要求r2≡x (mod n) (1 <= r < n)的全部解.R为一个已知解 思路: ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- poj 2891 扩展欧几里得迭代解同余方程组
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...
随机推荐
- Ubuntu环境变量配置
根目录下的.bashrc文件中配置环境变量 export JAVA_HOME=/home/zn/softpackage/jdk1. export CLASSPATH=${JAVA_HOME}/lib ...
- 前端之JQuery [续]
JQuery使用技巧 1.prop属性实现全选,反选,取消功能 需求: 实现全选,反选,取消功能 代码如下: <!DOCTYPE html> <html lang="en& ...
- DD DT DL标签
我们平时常用的是< ul>< li>标签,不过dd.dt标签也蛮不错,特别是发布程序的时候功能模块列表什么的可以使用它来排版. < dl>< /dl>& ...
- UI控件之UICollectionView
UICollectionView:集合视图,是iOS6.0后出现的,与UITableView类似,优势在于可以灵活的布局cell UICollectionViewLayout:布局类,抽象类,一般定义 ...
- vagrant搭建
1.在官网下载对应的vagrant版本 https://www.vagrantup.com/downloads.html (下载最新版本) https://releases.hashicorp.com ...
- 在Java项目中部署使用Memcached[转]
在项目中使用到Memcached主要的目的是,通过缓存数据库查询结果,减少数据库访问次数,从而提高动态.数据库驱动网站的速度.提高可扩展性.Memcached是一个高性能的分布式内存对象缓存系统,基于 ...
- 【P2405】方格取数问题加强版(费用流)
考虑如何建图.还是老样子先拆点,然后把每两个点之间连接两条边,一条流量为1,费用为-点权,处理是否走这个点.一条流量无限,没有费用,因为哪怕一个点选过了,它的地方还是可以重复走过去的. 然后把经由一个 ...
- 【bzoj2819】Nim(dfs序+树状数组/线段树)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2819 首先根据SG定理,可得若每堆石子数量的异或值为0,则后手必胜,反之先手必胜.于是 ...
- springboot+mybatis+springSecurity+thymeleaf
配置步骤: .pom <dependencies> <dependency> <groupId>org.springframework.security</g ...
- 考勤助手——基于CS三层结构的子系统设计
因为小组比较倾向于cs分层结构的风格,所以基于对考勤助手最初的体系架构的设计进行了子系统的分层设计,如下图: 1.教务老师安排课程子系统 2.教务老师查询相关信息的子系统 3.任课教师管理考勤子系统 ...