【bzoj3289】mato的文件管理
首先允许离线,一眼莫队……
然后考虑对于每次移动,这不就是让你求逆序对嘛(QAQ)
考虑怎么移动?
- 每次在最后添加一个数,比这个数大的数都会与其形成一个逆序对
- 每次在最后移除一个数,比这个数大的数都会与其形成一个逆序对
- 每次在最前添加一个数,比这个数小的数都会与其减少一个逆序对
- 每次在最前移除一个数,比这个数小的数都会与其减少一个逆序对
那么每次移动的时候我拿树状数组查询一下就好,注意要离散化。
#include<bits/stdc++.h>
#define N 50005
#define inf 1000000007
using namespace std;
typedef unsigned int uint;
uint ans[N],now;
int n,m,a[N],b[N],rt[N];
int c[*N];
struct Query{int l,r,id;}q[*N];
inline int lowbit(int x){return x&(-x);}
bool operator<(Query x,Query y){
if(rt[x.l]==rt[y.l])return x.r<y.r;
return rt[x.l]<rt[y.l];
}
inline void add(int x,int val){
for(int i=x;i<=n;i+=lowbit(i))c[i]+=val;
}
uint ask(int x){
uint ans=;
for(int i=x;i;i-=lowbit(i))ans+=c[i];
return ans;
}
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int main(){
n=read();int x=(int)sqrt(n);
for(int i=;i<=n;i++)a[i]=read(),b[i]=a[i];
sort(b+,b+n+);
for(int i=;i<=n;i++)a[i]=lower_bound(b+,b+n+,a[i])-b;
m=read();
for(int i=;i<=m;i++)q[i].l=read(),q[i].r=read(),q[i].id=i;
for(int i=;i<=n;i++)rt[i]=(i-)/x+;
sort(q+,q+m+);
int l=,r=;
for(int i=;i<=m;i++){
while(l<q[i].l)add(a[l],-),now-=ask(a[l]-),l++;
while(r>q[i].r)add(a[r],-),now-=r-l-ask(a[r]),r--;
while(l>q[i].l)l--,add(a[l],),now+=ask(a[l]-);
while(r<q[i].r)r++,add(a[r],),now+=r-l+-ask(a[r]);
ans[q[i].id]=now;
}
for(int i=;i<=m;i++)printf("%d\n",ans[i]);
return ;
}
【bzoj3289】mato的文件管理的更多相关文章
- 数据离散化 ( 以及 stl 中的 unique( ) 的用法 )+ bzoj3289:Mato的文件管理
http://blog.csdn.net/gokou_ruri/article/details/7723378 ↑惯例Mark大神的博客 bzoj3289:Mato的文件管理 线段树求逆序对+莫队 ...
- [bzoj3289]Mato的文件管理_莫队_树状数组
Mato的文件管理 bzoj-3289 题目大意:给定一个n个数的序列.m次询问:一段区间中的逆序对个数. 注释:$1\le n\,mle 5\cdot 10^4$. 想法: 开始想这个题的大佬们,给 ...
- BZOJ3289 Mato的文件管理 【莫队 + 树状数组】
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MB Submit: 3964 Solved: 1613 [Submit][Status] ...
- [bzoj3289]Mato的文件管理
Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号.为了防止他人偷拷,这些资料都是加密过的,只能用Mato自己写的程序才能 ...
- BZOJ3289 Mato的文件管理(莫队+树状数组)
这个做法非常显然. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib& ...
- BZOJ3289 Mato的文件管理(莫队算法+树状数组)
题目是区间逆序数查询. 莫队算法..左或右区间向左或右延伸时加或减这个区间小于或大于新数的数的个数,这个个数用树状数组来统计,我用线段树超时了.询问个数和数字个数都记为n,数字范围不确定所以离散化,这 ...
- bzoj3289 Mato的文件管理 莫队+树状数组
求逆序对个数,莫队套树状数组 #include<cstdio> #include<iostream> #include<cstring> #include<c ...
- 【莫队算法】bzoj3289 Mato的文件管理
莫队算法,离线回答询问,按一定大小(sqrt(n*log(n))左右)将答案分块,按 ①左端点所在块②右端点 双关键字排序. 然后暴力转移. 转移的时候用树状数组. O(n*sqrt(n)*log(n ...
- 【BZOJ3289】Mato的文件管理 莫队算法+树状数组
[BZOJ3289]Mato的文件管理 Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号.为了防止他人偷拷,这些资料都是 ...
- BZOJ 3289: Mato的文件管理[莫队算法 树状数组]
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 2399 Solved: 988[Submit][Status][Di ...
随机推荐
- Tensorflow Estimators
这篇文章介绍tf.estimator,一个高级TensorFlow API,可以极大简化机器学习编程.Estimators封装了下面几个活动. 训练 评估 预测 出口服务(export for ser ...
- Python 把两个列表遍历为一个
两个list, 有对应关系,希望同时完成遍历 用迭代器迭代的方法也不是不可以,python提供了更直观的方法: 可以使用zip把两个list打包 , 类似: list1 = [1,2,3,4] lis ...
- sqlserver查询数据库中有多少个表,多少视图,多少存储过程,或其他对象
sql server 数表: select count(1) from sysobjects where xtype='U' 数视图: select count(1) from sysobjects ...
- Go基础篇【第2篇】: 内置库模块 fmt
fmt官方文档说明:https://studygolang.com/pkgdoc import "fmt" mt包实现了类似C语言printf和scanf的格式化I/O.格式化动作 ...
- Java FTP下载文件以及编码问题小结
问题 之前在开发过程中,遇到了一点问题,我要访问一个FTP服务器去下载文件详细情况如下: 1. 需要传入一个可能为中文的文件名: 2. 通过文件名去FTP上寻找该文件: 3. FTP服务器的命名编码为 ...
- android桌面悬浮窗仿QQ手机管家加速效果
主要还是用到了WindowManager对桌面悬浮进行管理. 需要一个火箭的悬浮窗 一个发射台悬浮窗 ,判断火箭是否放到了发射台,如果放上了,则使用AsyTask 慢慢将火箭的图片往上移.结束后., ...
- LTE QCI分类 QoS
http://blog.163.com/gzf_lte/blog/static/20840310620130140057204/ http://blog.163.com/gzf_lte/blog/st ...
- FileReader 获取图片BASE64 代码 并预览
FileReader 获取图片的base64 代码 并预览 FileReader ,老实说我也不怎么熟悉.在这里只是记录使用方法. 方法名 参数 描述 abort none 中断读取 readAsBi ...
- Luogu 3435 POI2006OKR-Periods of Words(kmp)
显然答案应该是Σi-next[next[……next[i]]] (next[next[……next[i]]]>0).递推即可. #include<iostream> #include ...
- [NOI.AC省选模拟赛3.30] Mas的童年 [二进制乱搞]
题面 传送门 思路 这题其实蛮好想的......就是我考试的时候zz了,一直没有想到标记过的可以不再标记,总复杂度是$O(n)$ 首先我们求个前缀和,那么$ans_i=max(pre[j]+pre[i ...