【题解】Zap(莫比乌斯反演)

裸题...

直接化吧

[P3455 POI2007]ZAP-Queries

所有除法默认向下取整

\[\Sigma_{i=1}^x\Sigma_{j=1}^y[(i,j)=k]
\\
=\Sigma_{i=1}^{x/k}\Sigma_{j=1}^{y/k}[(i,j)=1]
\\
=\Sigma_{i=1}^{x/k}\Sigma_{j=1}^{y/k}\Sigma_{d|(i,j)}\mu(d)
\\
=\Sigma_{d=1}^{min(x,y)}\Sigma_{i=1}^{x/k}\Sigma_{j=1}^{y/k}\mu(d)\times[d|(i,j)]
\\
=\Sigma_{d=1}^{min(x,y)}(\frac x {dk})(\frac y {dk})\mu(d)
\]

整除分块直接做...

有一个细节,可能有疑惑:

		r=min(x/(x/l),y/(y/l));
ans+=1ll*(x/(l*k))*(y/((l*k)))*(sum[r]-sum[l-1]);

整除分块为什么是这样的?为什么r=min(x/(x/l),y/(y/l));中的"\(l\)"和ans+=1ll*(x/(l*k))*(y/((l*k)))*(sum[r]-sum[l-1]);不统一,为什么是(x/(l*k))*(y/(l*k))?这不是整除分块正常的套路啊?

可以这样理解,整除分块利用了\(\lfloor \frac x l \rfloor\)在一定范围内不变的性质,所以我们同样也会有\(\lfloor\frac {\lfloor \frac x l \rfloor} k\rfloor\)在一定范围内不变化,并且前面那个式子包括的\(l\)的范围一定小于后面的那个\(l\)的范围,所以我们按照\(\lfloor \frac x l \rfloor\)整除分块即可。

至于如何按照\(\lfloor\frac {\lfloor \frac x l \rfloor} k\rfloor=\lfloor \frac x {lk} \rfloor\)分块,我也不知道怎么办,希望有高手指点一下QAQ

#include<bits/stdc++.h>

using namespace std;typedef long long ll;
template < class ccf >
inline ccf qr(ccf b){
register char c=getchar();register int q=1;register ccf x=0;
while(c<48||c>57)q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)x=x*10+c-48,c=getchar();
return q==-1?-x:x;}
inline int qr(){return qr(1);}
const int maxn=1e5+5;
bool usd[maxn];
int mu[maxn];
int sum[maxn];
vector < int > ve;
int x,y,k;
#define pb push_back
inline void gen(){
mu[1]=sum[1]=usd[1]=1;
for(register int t=2;t< maxn;++t){
if(not usd[t])
ve.pb(t),mu[t]=-1;
for(register auto p:ve)
if(1ll*p*t<maxn)
if(usd[p*t]=1,t%p) mu[p*t]=-mu[t];
else break;
else break;
sum[t]=sum[t-1]+mu[t];
}
} int main(){
gen();
int T=qr();
while(T--){
x=qr();y=qr();k=qr();
ll ans=0;
for(register int l=1,r=0,edd=min(x,y)/k;l<=edd;l=r+1){
r=min(x/(x/l),y/(y/l));
ans+=1ll*(x/(l*k))*(y/((l*k)))*(sum[r]-sum[l-1]);
}
cout<<ans<<endl;
}
return 0;
}

【题解】Zap(莫比乌斯反演)的更多相关文章

  1. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  2. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  3. 【BZOJ1101】Zap [莫比乌斯反演]

    Zap Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 对于给定的整数a,b和d,有多少正整 ...

  4. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

  5. bzoj 1101 Zap —— 莫比乌斯反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #inc ...

  6. BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)

    手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...

  7. CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】

    反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...

  8. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  9. BZOJ 1101 Zap(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1101 给定a,b,d,求有多少gcd(x,y)==d(1<=x<=a&& ...

随机推荐

  1. Oracle安装过程中的几点注意

    为追求统一,安装了oracle 11g step 4时需要改一下名称,利于记忆 数据库安装完之后需要取消SCOTT账户的锁定 完成后点击SQL Developer会出现——"应用程序开发&q ...

  2. linux tomacat 之部署 war包

    之前一篇写的是tomcat的linux安装,其中主要是jre 的问题,接下来讲讲 tomcat发布war包 这是一个相对简单的过程 打好war包后,将war包上传到/usr/local/tomcat/ ...

  3. Android应用中使用百度地图API之POI(三)

    先看执行后的图吧: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbWFqaWFuamll/font/5a6L5L2T/fontsize/400/fill/ ...

  4. vue 结合localStorage 来双向绑定数据

    结合localStorage 来双向绑定数据(超级神奇) localStorage.js: const STORAGE_KEY = 'todos_vuejs' export default { fet ...

  5. leetcode第一刷_Balanced Binary Tree

    二叉平衡树好火啊.差点儿每一个公司的笔试题里都有它.考了好多次我都不会,挂笔试非常有可能就是由于它.另一个它的同伙叫二叉搜索树,貌似人气比它还要高一些. 二叉平衡树是什么样的树呢.是每一个节点的左右子 ...

  6. iOS视频压缩存储至本地并上传至服务器

    最近做了一个项目,我把其中的核心功能拿出来和大家分享一下,重点还是自己梳理一下. 这里关于视频转码存储我整理了两个方法,这两个方法都是针对相册内视频进行处理的. 1.该方法没有对视频进行压缩,只是将视 ...

  7. Win10系统如何配置Tomcat环境变量

    我们知道win10用户在配置Tomcat环境变量的时候,首先需要配置JAVA,这样才能配置Tomcat环境.很多用户并不知道要如何进行配置,下面就给大家介绍win10系统怎样Tomcat环境变量的. ...

  8. Java Web -- Servlet(1) 必备知识

    学习Java WEB开发必备的基本概念: 1.WEB 本意是蜘蛛网和网的意思.在网页设计中我们称为网页的意思. 现广泛译作网络.互联网等技术领域.表现为三种形式,即超文本(hypertext).超媒体 ...

  9. VC++通过API连接MySQL

    1.  首先安装MySQL数据库server,本文安装的是mysql-installer-community-5.6.10.1.msi这个版本号.至于各个版本号有什么不同,不在这里说明. 例如以下的默 ...

  10. 从git上拉下来的严选weex项目demo

    项目地址 https://github.com/zwwill/yanxuan-weex-demo 在package.json里"author"之类后面加上 "privat ...