【题解】Zap(莫比乌斯反演)
【题解】Zap(莫比乌斯反演)
裸题...
直接化吧
[P3455 POI2007]ZAP-Queries
所有除法默认向下取整
\\
=\Sigma_{i=1}^{x/k}\Sigma_{j=1}^{y/k}[(i,j)=1]
\\
=\Sigma_{i=1}^{x/k}\Sigma_{j=1}^{y/k}\Sigma_{d|(i,j)}\mu(d)
\\
=\Sigma_{d=1}^{min(x,y)}\Sigma_{i=1}^{x/k}\Sigma_{j=1}^{y/k}\mu(d)\times[d|(i,j)]
\\
=\Sigma_{d=1}^{min(x,y)}(\frac x {dk})(\frac y {dk})\mu(d)
\]
整除分块直接做...
有一个细节,可能有疑惑:
r=min(x/(x/l),y/(y/l));
ans+=1ll*(x/(l*k))*(y/((l*k)))*(sum[r]-sum[l-1]);
整除分块为什么是这样的?为什么r=min(x/(x/l),y/(y/l));中的"\(l\)"和ans+=1ll*(x/(l*k))*(y/((l*k)))*(sum[r]-sum[l-1]);不统一,为什么是(x/(l*k))*(y/(l*k))?这不是整除分块正常的套路啊?
可以这样理解,整除分块利用了\(\lfloor \frac x l \rfloor\)在一定范围内不变的性质,所以我们同样也会有\(\lfloor\frac {\lfloor \frac x l \rfloor} k\rfloor\)在一定范围内不变化,并且前面那个式子包括的\(l\)的范围一定小于后面的那个\(l\)的范围,所以我们按照\(\lfloor \frac x l \rfloor\)整除分块即可。
至于如何按照\(\lfloor\frac {\lfloor \frac x l \rfloor} k\rfloor=\lfloor \frac x {lk} \rfloor\)分块,我也不知道怎么办,希望有高手指点一下QAQ
#include<bits/stdc++.h>
using namespace std;typedef long long ll;
template < class ccf >
inline ccf qr(ccf b){
register char c=getchar();register int q=1;register ccf x=0;
while(c<48||c>57)q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)x=x*10+c-48,c=getchar();
return q==-1?-x:x;}
inline int qr(){return qr(1);}
const int maxn=1e5+5;
bool usd[maxn];
int mu[maxn];
int sum[maxn];
vector < int > ve;
int x,y,k;
#define pb push_back
inline void gen(){
mu[1]=sum[1]=usd[1]=1;
for(register int t=2;t< maxn;++t){
if(not usd[t])
ve.pb(t),mu[t]=-1;
for(register auto p:ve)
if(1ll*p*t<maxn)
if(usd[p*t]=1,t%p) mu[p*t]=-mu[t];
else break;
else break;
sum[t]=sum[t-1]+mu[t];
}
}
int main(){
gen();
int T=qr();
while(T--){
x=qr();y=qr();k=qr();
ll ans=0;
for(register int l=1,r=0,edd=min(x,y)/k;l<=edd;l=r+1){
r=min(x/(x/l),y/(y/l));
ans+=1ll*(x/(l*k))*(y/((l*k)))*(sum[r]-sum[l-1]);
}
cout<<ans<<endl;
}
return 0;
}
【题解】Zap(莫比乌斯反演)的更多相关文章
- BZOJ1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2951 Solved: 1293[Submit][Status ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
- 【BZOJ1101】Zap [莫比乌斯反演]
Zap Time Limit: 10 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Description 对于给定的整数a,b和d,有多少正整 ...
- 1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...
- bzoj 1101 Zap —— 莫比乌斯反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #inc ...
- BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)
手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...
- CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】
反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...
- BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )
求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...
- BZOJ 1101 Zap(莫比乌斯反演)
http://www.lydsy.com/JudgeOnline/problem.php?id=1101 给定a,b,d,求有多少gcd(x,y)==d(1<=x<=a&& ...
随机推荐
- STM32F103RB, KEIL编译出错:cannot open preprocessing output output file ".\神舟i号\main.d" no such file or
STM32F103RB, KEIL编译出错:cannot open preprocessing output output file ".\神舟i号\main.d" no su ...
- js var ImgObj=new Image();
API地址: 1 https://developer.mozilla.org/en-US/docs/Web/API/HTMLImageElement 下面来看看Image到底是个什么东东,我先将Ima ...
- android-gradle-深入浅出-五:build type
默认情况下,Android插件自动为项目构建一个debug和一个release版本的应用.这两个版本的不同主要体现在在非开发机上的调试功能以及APK的签名方式.debug版本使用一个用公开的name/ ...
- Linux 性能监控 —— Load Average
一. 简单介绍 top. uptime. cat /proc/loadavg 命令中 Load average: 4.90, 5.51, 5.77 整体含义: 正在执行的任务数量 + 排 ...
- centos docker
1.安装docker yum install docker --安装docker service docker start --启动docker服务 docker --version --查看版本 ...
- SVN checkout 功能不可用 右键只看到提交和更新,没有显示checkout
不要在受SVN控制的文件夹里点右键,因为这个文件夹已经在SVN控制之下,当然不会允许在里面嵌套另一个SVN版本库换个不受控的文件夹点右键,比如D盘根目录
- Atitit.数据库表的物理存储结构原理与架构设计与实践
Atitit.数据库表的物理存储结构原理与架构设计与实践 1. Oracle和DB2数据库的存储模型如图: 1 1.1. 2. 表数据在块中的存储以及RowId信息3 2. 数据表的物理存储结构 自然 ...
- css中div标签不置顶
设置div属性垂直对齐方式为:top <div style="vertical-align: top;"></div>
- Java并发编程(十三)同步容器类
同步容器类 Vector.HashTable,我用的很少:Vecotr的实现和ArrayList挺接近的,不同的是Vector中很多的方法都用synchronized进行了同步.在不强调线程安全地时候 ...
- Redis 哈希槽
Redis 集群中内置了 16384 个哈希槽,当需要在 Redis 集群中放置一个 key-value时,redis 先对 key 使用 crc16 算法算出一个结果,然后把结果对 16384 求余 ...