Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15498    Accepted Submission(s): 10926

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 
Input
The
input contains several test cases. Each test case contains a positive
integer N(1<=N<=120) which is mentioned above. The input is
terminated by the end of file.
 
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 
Sample Input
4
10
20
 
Sample Output
5
42
627
 
Author
Ignatius.L
 
Recommend
We have carefully selected several similar problems for you:  1171 1085 1398 2152 1709
 
 
#include<stdio.h>
#include<string.h>
int ans[],temp[];
int main(){
int n;
while(scanf("%d",&n)!=EOF){
memset(ans,,sizeof(ans));
memset(temp,,sizeof(temp));
for(int i=;i<=n;i++)
ans[i]=;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
for(int k=;k+j<=n;k+=i){
temp[k+j]+=ans[j];
}
}
for(int ti=;ti<=n;ti++){
ans[ti]=temp[ti];
temp[ti]=;
} } printf("%d\n",ans[n]);
}
return ;
}

HDU 1028 整数拆分问题 Ignatius and the Princess III的更多相关文章

  1. Ignatius and the Princess III HDU - 1028 || 整数拆分,母函数

    Ignatius and the Princess III HDU - 1028 整数划分问题 假的dp(复杂度不对) #include<cstdio> #include<cstri ...

  2. HDU 1028 整数拆分 HDU 2082 找单词 母函数

    生成函数(母函数) 母函数又称生成函数.定义是给出序列:a0,a1,a2,...ak,...an, 那么函数G(x)=a0+a1*x+a2*x2+....+ak*xk +...+an* xn  称为序 ...

  3. hdu,1028,整数拆分的理解

    #include"iostream"using namespace std;int main() { int n,i,j,k; int c[122],temp[122]; //c[ ...

  4. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. HDU 1028 Ignatius and the Princess III 整数的划分问题(打表或者记忆化搜索)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1028 Ignatius and the Princess III Time Limit: 2000/1 ...

  6. hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...

  7. hdu 1028 Ignatius and the Princess III 母函数

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  8. hdu 1028 Ignatius and the Princess III(DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  9. HDU 1028 Ignatius and the Princess III (母函数或者dp,找规律,)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

随机推荐

  1. 零基础Python知识点回顾(三)

    元组 元组是用圆括号括起来的,其中的元素之间用逗号隔开.(都是英文半角)tuple(元组)跟列表类似是一种序列类型的数据,特点就是其中的元素不能更改 既然是有序的,那么,嘿嘿,不错,它也可以有索引,能 ...

  2. Vue插槽 slot

    1. 什么是插槽 插槽slot 是往父组件中插入额外内容,实现组件的复用,一个插槽插入到一个对应的标签中 2. 实例: 一个组件中不允许有两个匿名插槽 </head> <body&g ...

  3. 【BGP的基本配置】

    BGP的基本配置 一:根据项目需求搭建好拓扑图如下 二:配置 1:首先进行理论分析:RT1和RT2,3分别属于不同的AS;在RT1和RT2之间建立EBGP关系,在确保RT3可以学到RT1的8.1.1. ...

  4. ubuntu如何设置Python的版本

    Ubuntu默认已经安装了Python的版本了,不过是Python2的版本. 我们安装好Python3想把他切换为系统默认的版本. sudo update-alternatives --config ...

  5. Mina 组件介绍之 IoAcceptor 与 IoConnector

    在网络通信中,Socket通信的双方分为服务端与客户端,在Java NIO 的实现中采用Socket/ServerSocket, SocketChannel/ServerSocketChannel分别 ...

  6. Delphi初始化与结束化

    unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms ...

  7. python三大神器之生成器

    生成器Generator: 本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现) 特点:惰性运算,开发者自定义 在python中有三种方法来获取生成器: 1.通过生成 ...

  8. 10---git安装

    卸载原来的版本: # 查看版本 git --version # 移除原来的版本 yum remove git 安装依赖库: yum install curl-devel expat-devel get ...

  9. STL 入门 (17 暑假集训第一周)

    快速全排列的函数 头文件<algorithm> next_permutation(a,a+n) ---------------------------------------------- ...

  10. python2.7练习小例子(十)

        10):古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?     程序分析:兔子的规律为数列1,1 ...