基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。(据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数)。

 
具体定义如下:
如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。
如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。
给出一个数n, 计算miu(n)。
Input
输入包括一个数n,(2 <= n <= 10^9)
Output
输出miu(n)。
Input示例
5
Output示例
-1

【分析】:

(1)如果这个数n能整除某个数的平方,那么函数值就为0;


(2)否则判断它的因子个数(k)的奇偶性,函数值为(-1)^k;


 【代码】:

#include<string.h>
#include<stdlib.h>
#include<queue>
#include<stack>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<stdlib.h>
#include<cmath>
#include<string>
#include<algorithm>
#include<iostream>
#define exp 1e-10
#define MAX(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N = ;
const int M = ;
const int inf = ;
const int mod = ;
int fun(int n)
{
int cnt;
int sum=;
for(int i=;i*i<=n;i++)
{
cnt=;
if(n%i==)
{
sum++;//记录质因子个数
while(n%i==)//计算因子个数
{
n=n/i;
cnt++;
}
if(cnt>=)//若此因子出现次数大于等于两次,则因子必存在i的平方
return ;
}
} if(n!=)
sum++;
return (sum%)?-:;//如果因子个数为奇数则函数值为-1 ,如果因子个数为偶数则函数值为1
}
int main()
{
int n;
while(~scanf("%d",&n))
printf("%d\n",fun(n));
return ;
}

51nod 1240 莫比乌斯函数【数论+莫比乌斯函数】的更多相关文章

  1. 51nod 1240 莫比乌斯函数

    题目链接:51nod 1240 莫比乌斯函数 莫比乌斯函数学习参考博客:http://www.cnblogs.com/Milkor/p/4464515.html #include<cstdio& ...

  2. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  3. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  4. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  5. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  6. 深入理解javascript函数定义与函数作用域

    最近在学习javascript的函数,函数是javascript的一等对象,想要学好javascript,就必须深刻理解函数.本人把思路整理成文章,一是为了加深自己函数的理解,二是给读者提供学习的途径 ...

  7. JavaScript 函数节流和函数去抖应用场景辨析

    概述 也是好久没更新 源码解读,看着房价蹭蹭暴涨,心里也是五味杂陈,对未来充满恐惧和迷茫 ...(敢问一句你们上岸了吗) 言归正传,今天要介绍的是 underscore 中两个重要的方法,函数节流和函 ...

  8. 如果你也会C#,那不妨了解下F#(4):了解函数及常用函数

    函数式编程其实就是按照数学上的函数运算思想来实现计算机上的运算.虽然我们不需要深入了解数学函数的知识,但应该清楚函数式编程的基础是来自于数学. 例如数学函数\(f(x) = x^2+x\),并没有指定 ...

  9. js函数表达式和函数声明的区别

    我们已经知道,在任意代码片段外部添加包装函数,可以将内部的变量和函数定义"隐 藏"起来,外部作用域无法访问包装函数内部的任何内容. 例如: var a = 2; function ...

  10. [Machine Learning] logistic函数和softmax函数

    简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用, ...

随机推荐

  1. 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp

    题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...

  2. 【题解】[USACO12JAN]视频游戏的连击Video Game Combos

    好久没有写博客了,好惭愧啊……虽然这是一道弱题但还是写一下吧. 这道题目的思路应该说是很容易形成:字符串+最大值?自然联想到学过的AC自动机与DP.对于给定的字符串建立出AC自动机,dp状态dp[i] ...

  3. python实现关联规则

    代码中Ci表示候选频繁i项集,Li表示符合条件的频繁i项集 # coding=utf-8 def createC1(dataSet): # 构建所有1项候选项集的集合 C1 = [] for tran ...

  4. Boosting&Bagging

    Boosting&Bagging 集成学习方法不是单独的一个机器学习算法,而是通过构建多个机器学习算法来达到一个强学习器.集成学习可以用来进行分类,回归,特征选取和异常点检测等.随机森林算法就 ...

  5. 深入理解Java虚拟机—内存管理机制

    前面说过了类的加载机制,里面讲到了类的初始化中时用到了一部分内存管理的知识,这里让我们来看下Java虚拟机是如何管理内存的. 先让我们来看张图 有些文章中对线程隔离区还称之为线程独占区,其实是一个意思 ...

  6. Bash script: report largest InnoDB files

    The following script will report the largest InnoDB tables under the data directory: schema, table & ...

  7. 封装安卓的okhttp

    1.封装了get方法,handler更新主线程,回调的onsuccess,onfailure,onerror等方法 2.配置文件 api 'com.android.support:recyclervi ...

  8. java,jenkins

    以前玩的是hudson ,现在玩的是jenkins.以前用的是Tomcat,现在不知道他们怎么不用... 1,装个Jenkins镜像. 2.配置项目: 先取个名字:exchange 配个svn: 构建 ...

  9. CSS3学习笔记之径向展开菜单

    效果截图: HTML代码: <div class="menu-wrap"> <nav> <a href="" class=&quo ...

  10. 慕课网javascript 进阶篇 第九章 编程练习

    把平常撸的码来博客上再撸一遍既可以加深理解,又可以理清思维.还是很纯很纯的小白,各位看官老爷们,不要嫌弃.最近都是晚睡,昨晚也不例外,两点多睡的.故,八点起来的人不是很舒服,脑袋有点晕呼呼,鉴于昨晚看 ...