zoj How Many Sets I(组合计数)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?
problemId=4535
一个集合s有n个元素,求满足这种集合序列{s1,s2....sk}使S1 ∩
S2 ∩ ... ∩ Sk =
∅。si是s的子集。
从每一个元素考虑会使问题变得简单。
首先n个元素是相互独立的,单独考虑第i个元素,它在k个子集的全部情况是2^k,当中有一种情况是k个子集都有第i个元素,这一种情况正好不是我们想要的,所以合法的应该是2^k-1。那么n个元素就是( 2^k-1 )^n。
#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <bitset>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
//#define LL __int64
#define LL long long
#define ULL unsigned long long
#define eps 1e-9
#define PI acos(-1.0)
using namespace std; const LL mod = 1000000007; LL Pow(LL a, LL b)
{
LL res = 1;
while(b)
{
if(b&1)
res = (res*a)%mod;
b >>= 1;
a = (a*a)%mod;
}
return res;
} int main()
{
LL n,k;
while(~scanf("%lld %lld",&n,&k))
{
LL res = Pow((LL)2,k);
res -= 1;
res = Pow(res,n);
printf("%lld\n",res);
}
return 0;
}
zoj How Many Sets I(组合计数)的更多相关文章
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)
[HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...
- [总结]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...
- 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)
[BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
- 【BZOJ4005】[JLOI2015] 骗我呢(容斥,组合计数)
[BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; ...
随机推荐
- 【LeedCode】3Sum
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all un ...
- Android 欢迎界面淡入效果并用WebView加载网址
1.首先是欢迎界面布局文件,只有一个背景图片:welcome.xml: <?xml version="1.0" encoding="utf-8"?> ...
- 使用python抓取并分析数据—链家网(requests+BeautifulSoup)(转)
本篇文章是使用python抓取数据的第一篇,使用requests+BeautifulSoup的方法对页面进行抓取和数据提取.通过使用requests库对链家网二手房列表页进行抓取,通过Beautifu ...
- rhel 6.5 yum源的配置
https://blog.csdn.net/error_0_0_/article/details/54962199
- 大话PHP设计模式
设计模式 一书将设计模式引入软件社区,该书的作者是 Erich Gamma.Richard Helm.Ralph Johnson 和 John Vlissides Design(俗称 “四人帮”).所 ...
- 浙江省第十二届省赛 Beauty of Array(思维题)
Description Edward has an array A with N integers. He defines the beauty of an array as the summatio ...
- shell脚本学习(二)
shell传递参数 shell脚本在执行是可以传递参数,脚本内获取参数的格式为:$n,n为一个数字,1为第一个参数,2为第二个参数,以此类推 其中,$0代表了要执行的文件名 实例: 代码如下: #!/ ...
- Codeforces 810 A.Straight «A»
A. Straight «A» time limit per test 1 second memory limit per test 256 megabytes input standard in ...
- Linux下提示命令找不到:bash:command not found
Linux下输入某些命令时会提示:bash:command not found. 首先,查看$PATH中是否包含了这些命令. $PATH:决定了shell到哪些目录中去寻找命令或程序,PATH值是一系 ...
- SqlMapConfig.xml详细介绍
1,连接数据库 <!--配置环境,默认的环境id为oracle --> <environments default="oracle"> <!-- 配置 ...