P2053 [SCOI2007]修车 费用流
$ \color{#0066ff}{ 题目描述 }$
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。
说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
\(\color{#0066ff}{输入格式}\)
第一行有两个数M,N,表示技术人员数与顾客数。
接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。
\(\color{#0066ff}{输出格式}\)
最小平均等待时间,答案精确到小数点后2位。
\(\color{#0066ff}{输入样例}\)
2 2
3 2
1 4
\(\color{#0066ff}{输出样例}\)
1.50
\(\color{#0066ff}{数据范围与提示}\)
(2<=M<=9,1<=N<=60), (1<=T<=1000)
\(\color{#0066ff}{题解}\)
这种对应关系还有数据范围,显然就是费用流了
现在的问题是怎么建边
发现,每辆车的等待时间跟前面修车人所修的车有关
假设某人修了10辆车
那么他修第一辆的时候,后面9人都等了这个时间,也就是贡献+=9倍的这个时间
因此我们单独考虑这个人修的每一辆车对时间的贡献
把每个人都拆成n个点
对于一个人的第k个点,连向它的车代表他倒数第k次修它
也就是连T*k的边权,倒数第k次修它,那么后面k辆车就会产生这么多贡献
跑一遍费用流即可(zkw大法好)
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 1e5 + 10;
const int inf = 0x7fffffff;
struct node {
int to, can, dis;
node *nxt, *rev;
node(int to = 0, int can = 0, int dis = 0, node *nxt = NULL): to(to), can(can), dis(dis), nxt(nxt) {
rev = NULL;
}
};
node *head[maxn], *cur[maxn];
bool vis[maxn];
int n, m, s, t;
int dis[maxn];
void add(int from, int to, int can, int dis) {
head[from] = new node(to, can, dis, head[from]);
}
void link(int from, int to, int can, int dis) {
add(from, to, can, dis);
add(to, from, 0, -dis);
head[from]->rev = head[to];
head[to]->rev = head[from];
}
bool spfa() {
std::queue<int> q;
for(int i = s; i <= t; i++) dis[i] = inf, vis[i] = false;
q.push(t);
dis[t] = 0;
while(!q.empty()) {
int tp = q.front(); q.pop();
vis[tp] = false;
for(node *i = head[tp]; i; i = i->nxt) {
if(dis[i->to] > dis[tp] - i->dis && i->rev->can) {
dis[i->to] = dis[tp] - i->dis;
if(!vis[i->to]) {
q.push(i->to);
vis[i->to] = true;
}
}
}
}
return dis[s] != inf;
}
int dfs(int x, int change) {
if(x == t || !change) return change;
int flow = 0, ls;
vis[x] = true;
for(node *i = head[x]; i; i = i->nxt) {
if(!vis[i->to] && dis[i->to] == dis[x] - i->dis && (ls = dfs(i->to, std::min(change, i->can)))) {
flow += ls;
change -= ls;
i->can -= ls;
i->rev->can += ls;
if(!change) break;
}
}
return flow;
}
int zkw() {
int cost = 0;
while(spfa()) {
vis[t] = true;
while(vis[t]) {
for(int i = s; i <= t; i++) vis[i] = false;
cost += dis[s] * dfs(s, inf);
}
}
return cost;
}
int main() {
m = in(), n = in(), s = 0, t = m * n + n + 1;
for(int i = 1; i <= m; i++)
for(int j = 1; j <= n; j++)
link(s, (i - 1) * n + j, 1, 0);
for(int i = 1; i <= n; i++) link(m * n + i, t, 1, 0);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) {
int x = in();
for(int k = 1; k <= n; k++) link((j - 1) * n + k, n * m + i, 1, k * x);
}
printf("%.2f\n", (double)zkw() / n);
return 0;
}
P2053 [SCOI2007]修车 费用流的更多相关文章
- bzoj 1070: [SCOI2007]修车 费用流
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2785 Solved: 1110[Submit][Status] ...
- [BZOJ1070][SCOI2007]修车 费用流
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 6209 Solved: 2641[Submit][Status] ...
- 【BZOJ1070】[SCOI2007]修车 费用流
[BZOJ1070][SCOI2007]修车 Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的. ...
- [bzoj1070][SCOI2007]修车——费用流
题目大意: 传送门 题解: 本题和(POJ3686)[http://poj.org/problem?id=3686]一题一模一样,而且还是数据缩小以后的弱化版QAQ,<挑战程序设计竞赛>一 ...
- [BZOJ1070] [SCOI2007] 修车 (费用流 & 动态加边)
Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序,使 ...
- 【BZOJ 1070】[SCOI2007]修车 费用流
就是拆个点限制一下(两点一排一大片),这道题让我注意到了限制这个重要的词.我们跑网络流跑出来的图都是有一定意义的,一般这个意义就对应了问题的一种方案,一般情况下跑一个不知道对不对的方案是相对容易的我们 ...
- [SCOI2007]修车 费用流
---题面--- 题解: 因为我们并不需要知道准确方案,而人数固定,要使得平均等待时间最小,也就是要使得总的等待时间最小. 因此我们将工人按每个时刻拆点,拆完之后向车子连边,流量为1,费用为k * 维 ...
- [SCOI2007]修车 费用流 BZOJ 1070
题目描述 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待 ...
- BZOJ.1070.[SCOI2007]修车(费用流SPFA)
题目链接 /* 神tm看错题*2.. 假如人员i依次维修W1,W2,...,Wn,那么花费的时间是 W1 + W1+W2 + W1+W2+W3... = W1*n + W2*(n-1) + ... + ...
随机推荐
- python学习——练习题(3)
""" 题目:一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少? """ import math d ...
- Catch That Cow(bfs)
Description Farmer John has been informed of the location of a fugitive cow and wants to catch her i ...
- OSCache-JSP页面缓存(1)
一.OSCache提供的缓存标签 这是OSCache提供的标签库中最重要的一个标签,包括在标签中的内容将应用缓存机制进行处理,处理的方式将取决于编程者对cache标签属性的设置. 第一次请求到达时,标 ...
- ubuntu下不用eclipse开发cocos2d-x(命令行)
之前在ubuntu下通过eclipse搭建开发cocos2d-x的环境,但是由于eclipse界面在ubuntu显得很丑,在里面写代码,完全没有感觉,后来我转到了win7上通过vs2010和eclip ...
- css常见问题解决方法
设置方法: div内的img和span都需要设置vertical-align:middle; 解决inline-block的空格: http://www.w3cplus.com/css/fightin ...
- WEB前端--JavaScript
JavaScript JavaScript基础 一.JavaScript简介 JavaScript是一种嵌入到HTML文件中的描述性语言,由浏览器的解释器将其动态地处理成可执行的代码,能独立地完成与客 ...
- python之yield函数
yield的英文单词意思是生产,刚接触Python的时候感到非常困惑,一直没弄明白yield的用法. 只是粗略的知道yield可以用来为一个函数返回值塞数据,比如下面的例子: def addlist( ...
- Entity Framework Tutorial Basics(40):Validate Entity
Validate Entity You can write custom server side validation for any entity. To accomplish this, over ...
- 清除Vs2010的工作区影射关系的缓存信息的文件夹路径
C:/Users/Administrator/AppData/Local/Microsoft/Team Foundation/3.0/Cache
- Oracle数据库之单表查询
接着上一篇的分享,今天主要给大家分享的是关于数据中的单表查询,单表查询很基础,也很重要,但是任何一个初学者必须要掌握的姿势,单表查询就是对单个表进行操作,查询我们想要的数据.单表查询里面的内容也是比较 ...