我一开始想的是倒着来,发现太屎,后来想到了一种神奇的方法——我们带着一个既有期望又有概率的矩阵,偶数(2*id)代表期望,奇数(2*id+1)代表概率,初始答案矩阵一列,1的位置为1(起点为0),工具矩阵上如果是直接转移那么就是由i到j概率期望都乘上1/alphabet,特别的,对于一个包含禁忌串的节点直接由其父节点指向0,而且在计算期望是多加上他的概率,最后统计答案时把答案矩阵上所有的期望加和即可,这个方法很完美的被卡精了.......

#include <cstdio>
#include <cstring>
#include <vector>
typedef long double LD;
const int N=;
char s[];
int alpha,n,m;
struct Trie{
int ch[],fail,deep;
bool god;
}node[N];
int sz,q[N],size;
LD a[N][N],temp_a[N][N],b[N],temp_b[N],need;
inline void insert(char *w){
int p=;
for(int i=;w[i];i++){
if(node[p].ch[w[i]-'a']==)node[p].ch[w[i]-'a']=++sz,node[sz].deep=node[p].deep+;
p=node[p].ch[w[i]-'a'];
}
node[p].god=;
}
inline void build(){
q[]=;
for(int i=,j=;i<=j;i++){
for(int l=;l<alpha;l++)
if(node[q[i]].ch[l])
q[++j]=node[q[i]].ch[l],
node[q[j]].fail=q[i]?node[node[q[i]].fail].ch[l]:,
node[q[j]].god=node[q[j]].god||node[node[q[j]].fail].god;
else
node[q[i]].ch[l]=q[i]?node[node[q[i]].fail].ch[l]:;
}
}
void dfs(int x){
for(int i=;i<alpha;i++){
if(node[node[x].ch[i]].god){
a[][x<<]+=need;
a[][(x<<)+]+=need;
a[][(x<<)+]+=need;
continue;
}
a[node[x].ch[i]<<][x<<]+=need;
a[(node[x].ch[i]<<)+][(x<<)+]+=need;
if(node[node[x].ch[i]].deep>node[x].deep)
dfs(node[x].ch[i]);
}
}
inline void Multi_a(){
for(int i=;i<=size;i++)
for(int j=;j<=size;j++)
temp_a[i][j]=;
for(int i=;i<=size;i++)
for(int j=;j<=size;j++)
for(int k=;k<=size;k++)
temp_a[i][j]+=a[i][k]*a[k][j];
for(int i=;i<=size;i++)
for(int j=;j<=size;j++)
a[i][j]=temp_a[i][j];
}
inline void Multi_b(){
for(int i=;i<=size;i++)temp_b[i]=;
for(int i=;i<=size;i++)
for(int j=;j<=size;j++)
temp_b[i]+=a[i][j]*b[j];
for(int i=;i<=size;i++)b[i]=temp_b[i];
}
int main(){
scanf("%d%d%d",&n,&m,&alpha),need=./alpha;
for(int i=;i<=n;i++)
scanf("%s",s),insert(s);
build(),dfs(),size=(sz<<)+,b[]=.;
while(m){
if(m&)Multi_b();
m>>=,Multi_a();
}
LD ans=.;
for(int i=;i<=sz;i++)ans+=b[i<<];
printf("%lf",(double)ans);
return ;
}

只是错了最后一个点

然后我去接受正解,按照我们的思路我们会建出来一个概率矩阵a[i][j]表示由j转移到i的概率,那就是加上1/alphabet,当然这里也有从禁忌串直接调回0的操作,然后我们想记录答案,我们就把矩阵扩大一阶,标号为sz+1,就是记录答案,那么我们由禁忌串向sz+1加上1/alphabet,那么我们发现这个矩阵自乘多少次,他的a[sz+1][0]的答案就是我们想要的答案。

经验教训:对于矩阵乘法,答案矩阵也可以是方阵,而且在一个矩阵里意义可以不同。

#include <cstdio>
#include <cstring>
#include <vector>
typedef long double LD;
const int N=;
char s[];
int alpha,n,m;
struct Trie{
int ch[],fail,deep;
bool god;
}node[N];
int sz,q[N],size;
LD a[N][N],temp[N][N],b[N][N],need;
inline void insert(char *w){
int p=;
for(int i=;w[i];i++){
if(node[p].ch[w[i]-'a']==)node[p].ch[w[i]-'a']=++sz,node[sz].deep=node[p].deep+;
p=node[p].ch[w[i]-'a'];
}
node[p].god=;
}
inline void build(){
q[]=;
for(int i=,j=;i<=j;i++){
for(int l=;l<alpha;l++)
if(node[q[i]].ch[l])
q[++j]=node[q[i]].ch[l],
node[q[j]].fail=q[i]?node[node[q[i]].fail].ch[l]:,
node[q[j]].god=node[q[j]].god||node[node[q[j]].fail].god;
else
node[q[i]].ch[l]=q[i]?node[node[q[i]].fail].ch[l]:;
}
}
void dfs(int x){
for(int i=;i<alpha;i++){
if(node[node[x].ch[i]].god){
a[][x]+=need;
a[sz+][x]+=need;
continue;
}
a[node[x].ch[i]][x]+=need;
if(node[node[x].ch[i]].deep>node[x].deep)
dfs(node[x].ch[i]);
}
}
inline void Multi_a(){
for(int i=;i<=size;i++)
for(int j=;j<=size;j++)
temp[i][j]=;
for(int i=;i<=size;i++)
for(int j=;j<=size;j++)
for(int k=;k<=size;k++)
temp[i][j]+=a[i][k]*a[k][j];
for(int i=;i<=size;i++)
for(int j=;j<=size;j++)
a[i][j]=temp[i][j];
}
inline void Multi_b(){
for(int i=;i<=size;i++)
for(int j=;j<=size;j++)
temp[i][j]=;
for(int i=;i<=size;i++)
for(int j=;j<=size;j++)
for(int k=;k<=size;k++)
temp[i][j]+=b[i][k]*a[k][j];
for(int i=;i<=size;i++)
for(int j=;j<=size;j++)
b[i][j]=temp[i][j];
}
int main(){
scanf("%d%d%d",&n,&m,&alpha),need=(LD)./(LD)alpha;
for(int i=;i<=n;i++)
scanf("%s",s),insert(s);
build(),dfs(),size=sz+,a[size][size]=.;
for(int i=;i<=size;i++)b[i][i]=.;
while(m){
if(m&)Multi_b();
m>>=,Multi_a();
}
printf("%.6lf",(double)b[size][]);
return ;
}

AC code

【BZOJ 2553】[BeiJing2011]禁忌 AC自动机+期望概率dp的更多相关文章

  1. 【BZOJ】2553: [BeiJing2011]禁忌 AC自动机+期望+矩阵快速幂

    [题意]给定n个禁忌字符串和字符集大小alphabet,保证所有字符在集合内.一个字符串的禁忌伤害定义为分割能匹配到最多的禁忌字符串数量(一个可以匹配多次),求由字符集构成的长度为Len的字符串的期望 ...

  2. bzoj 2553: [BeiJing2011]禁忌 AC自动机+矩阵乘法

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2553 题解: 利用AC自动机的dp求出所有的转移 然后将所有的转移储存到矩阵中,进行矩阵 ...

  3. bzoj 2553 [BeiJing2011]禁忌——AC自动机+概率DP+矩阵

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2553 看了题解才会…… 首先,给定一个串,最好的划分方式是按禁忌串出现的右端点排序,遇到能填 ...

  4. 【BZOJ2553】[BeiJing2011]禁忌 AC自动机+期望DP+矩阵乘法

    [BZOJ2553][BeiJing2011]禁忌 Description Magic Land上的人们总是提起那个传说:他们的祖先John在那个东方岛屿帮助Koishi与其姐姐Satori最终战平. ...

  5. 【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基

    大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率 ...

  6. BZOJ2553[BeiJing2011]禁忌——AC自动机+概率DP+矩阵乘法

    题目描述 Magic Land上的人们总是提起那个传说:他们的祖先John在那个东方岛屿帮助Koishi与其姐姐Satori最终战平.而后,Koishi恢复了读心的能力…… 如今,在John已经成为传 ...

  7. BZOJ2553 [BeiJing2011]禁忌 AC自动机 矩阵

    原文链接http://www.cnblogs.com/zhouzhendong/p/8196279.html 题目传送门 - BZOJ2553 题意概括 引用一下lych大佬的: 在字母只有前alph ...

  8. BZOJ 1559: [JSOI2009]密码( AC自动机 + 状压dp )

    建AC自动机后, dp(x, y, s)表示当前长度为x, 在结点y, 包括的串的状态为s的方案数, 转移就在自动机上走就行了. 对于输出方案, 必定是由给出的串组成(因为<=42), 所以直接 ...

  9. BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元

    大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...

随机推荐

  1. Mysql基础2-数据定义语言DDL

    主要: 数据库操作语句 数据表操作语句 视图定义语句 数据库表设计原则 DDL: Data Definition Language 数据定义语言 数据库操作语句 创建库 创建数据库: create d ...

  2. print(__file__)返回<encoding error>的问题

    今天写了一下代码,本来是想得到当前文件的上面三层的目录的,结果返回的却是错误 import os import sys print(__file__) # 得到上上层目录的路径之后,加入到默认的环境变 ...

  3. go web cookie和session

    cookie是存储在浏览器端,session是服务器端 cookie是有时间限制的,分会话cookie和持久cookie,如果不设置时间,那周期就是创建到浏览器关闭为止.这种是会话cookie,一般保 ...

  4. ActivityStream是什么?什么是Feed流?

    我先说说feed流吧,它就是社交网站中用户活动信息流,例如用户写了博客.发了照片.评论了什么等等.Facebook叫newsFeed.推特叫TimeLineFeed.ActivityStream是这些 ...

  5. 如何将h5网页改成微信网页

    1.如何将h5网页改成微信网页 1.设置安全域名          先登录微信公众平台进入“公众号设置”的“功能设置”里填写“JS接口安全域名”.         备注:登录后可在“开发者中心”查看对 ...

  6. 在WPF中自定义控件(3) CustomControl (上)

    原文:在WPF中自定义控件(3) CustomControl (上) 在WPF中自定义控件(3) CustomControl (上)                              周银辉 ...

  7. bzoj 一些题目汇总

    2140: 稳定婚姻 /* 求联通分量. */ #include<bits/stdc++.h> using namespace std; typedef long long LL; inl ...

  8. Office Web Apps Server(1)

         Office Web Apps Server runs on one or more servers and provides browser-based Office file viewi ...

  9. 一个知乎日报pwa

    前几天写了一篇文章关于如何实现一个简单版的pwa应用,端午撸了一个简易版知乎日报pwa. 关于如何写一个pwa,这里就不多介绍了,请移步这里.应用使用vue+vuex+axios,API这里,这里做了 ...

  10. 「日常训练」Mike and Feet(Codeforces Round #305 Div. 2 D)

    题意 (Codeforces 548D) 对一个有$n$个数的数列,我们要求其连续$x(1\le x\le n)$(对于每个$x$,这样的连续group有若干个)的最小数的最大值. 分析 这是一道用了 ...