1076: [SCOI2008]奖励关

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 3074  Solved: 1599
[Submit][Status][Discuss]

Description

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,
每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(
这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi
分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过
一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可
以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你
采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

  第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。

Output

  输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2
1 0
2 0

Sample Output

1.500000

HINT

【数据规模】

1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。

很容易想到状压Dp,但是转移的过程着实令人头疼

我们设f[i][s]是第i轮过后已吃状态为s的期望最优值

怎么转移?

我们考虑正着推:

①用f[i][s]更新f[i + 1][...],考虑到是概率期望,所以每次更新所产生的贡献难以确定

②用f[i - 1][...]更新f[i][s],由于宝物是可以重复收取的,所以无法确定删去一个点后的状态

那么我们可以考虑这样:f[i][s]表示第i轮开始前状态为s,从此刻开始到所有宝物收取完的利益期望之和

我们就可以每次枚举n个可能抛出的物品进行状态转移了

【状压的转移方式很重要】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 20,maxk = 105,maxm = 1 << 15,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
double f[maxk][maxm];
int v[maxn],w[maxn],n,K;
int main(){
K = RD(); n = RD(); int x,maxv = (1 << n) - 1;
REP(i,n){
w[i] = RD();
while ((x = RD())) v[i] |= (1 << x - 1);
}
for (int i = K; i > 0; i--){
for (int s = 0; s <= maxv; s++){
for (int t = 1; t <= n; t++){
if ((s & v[t]) == v[t]){
int e = 1 << t - 1;
f[i][s] += max(f[i + 1][s],f[i + 1][s | e] + w[t]);
}else f[i][s] += f[i + 1][s];
}
f[i][s] /= n;
}
}
printf("%.6lf\n",f[1][0]);
return 0;
}

BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】的更多相关文章

  1. [BZOJ1076][SCOI2008]奖励关 状压dp

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3070  Solved: 1595[Submit][Statu ...

  2. BZOJ1076:[SCOI2008]奖励关(状压DP,期望)

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  3. 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望

    [BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...

  4. SCOI2008奖励关 [状压dp]

    题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...

  5. B1076 [SCOI2008]奖励关 状压dp&&期望dp

    这个题的n<15,一看就是状压dp.但是状态不是很好想.f[][]存i关的状态j. 这个题另一个关键思想在于倒推,我一开始想的是正推,但是只能记忆化了. 题干: 题目描述 你正在玩你最喜欢的电子 ...

  6. 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)

    题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...

  7. 【BZOJ1076】奖励关(动态规划,数学期望)

    [BZOJ1076]奖励关(动态规划,数学期望) 题面 懒,粘地址 题解 我也是看了题解才会做 看着数据范围,很容易想到状压 然后,设\(f[i][j]\)表示当前第\(i\)轮,状态为\(j\)的期 ...

  8. 【BZOJ】1076: [SCOI2008]奖励关(状压dp+数学期望)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压 ...

  9. 洛谷P2473奖励关——状压DP

    题目:https://www.luogu.org/problemnew/show/P2473 还是对DP套路不熟悉... 像这种前面影响后面,而后面不影响前面的问题就应该考虑倒序递推: 看n只有15那 ...

随机推荐

  1. ethereum(以太坊)(基础)--容易忽略的坑(一)

    pragma solidity ^0.4.0; contract base{ address public _owner=msg.sender; uint _a; string internal _b ...

  2. 【Linux】Nginx无法加载.woff .eot .svg .ttf问题解决

    只需要修改Nginx的vhosts.ini,加上以下代码即可修复该问题 location ~ \.(eot|otf|ttf|woff|woff2|svg)$ { add_header Access-C ...

  3. PHP 面向对象编程笔记 (麦子 php 第二阶段)

    类是把具有相似特性的对象归纳到一个类中,类就是一组相同属性和行为的对象的集合.类和对象的关系:类是相似对象的描述,先有类,再有对象.类是对象的抽象,对象是类的实例.通过class关键字创建类,成员属性 ...

  4. Python基础03

    while循坏while属于条件判断 条件满足====>执行 条件不满足====>退出循环 whlie循环格式 while 条件 : 执行语句 while 1 == 1: print(&q ...

  5. django的查询集

    查询集表示从数据库中获取的对象集合,在管理器上调用某些过滤器方法会返回查询集,查询集可以含有零个.一个或多个过滤器.过滤器基于所给的参数限制查询的结果,从Sql的角度,查询集和select语句等价,过 ...

  6. (杭电 1097)A hard puzzle

    A hard puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. Qt5 调试之详细日志文件输出(qInstallMessageHandler)

    注明:以下方法仅适用于 Qt5 及以上版本  函数说明: QtMessageHandler qInstallMessageHandler(QtMessageHandler handler) 此函数在使 ...

  8. 剑指offer题目系列二

    本篇延续上一篇,介绍<剑指offer>第二版中的四个题目:从尾到头打印链表.用两个栈实现队列.旋转数组的最小数字.二进制中1的个数. 5.从尾到头打印链表 题目:输入一个链表的头结点,从尾 ...

  9. 43-Identity MVC:UI

    1-打开之前写的MvcCookieAuthSample项目, 在AccountController新加Register,Login方法 public class AccountController : ...

  10. java 第五章 方法定义及调用

    1.方法的定义 什么是方法 方法是完成某个功能的一组语句,通常将常用的功能写成一个方法 方法的定义 [访问控制符] [修饰符] 返回值类型 方法名( (参数类型 形式参数, ,参数类型 形式参数, , ...