Reverse a Road II
Time Limit: 10000ms, Special Time Limit:25000ms, Memory Limit:65536KB
Total submit users: 10, Accepted users: 6
Problem 13411 : No special judgement
Problem description

JAG Kingdom is a strange kingdom such that its N cities are connected only by one-way roads. The N cities are numbered 1 through N. ICPC (International Characteristic Product Corporation) transports its products from the factory at the city S to the storehouse
at the city T in JAG Kingdom every day. For efficiency, ICPC uses multiple trucks at once. Each truck starts from S and reaches T on the one-way road network, passing through some cities (or directly). In order to reduce risks of traffic jams and accidents,
no pair of trucks takes the same road.



Now, ICPC wants to improve the efficiency of daily transports, while ICPC operates daily transports by as many trucks as possible under the above constraint. JAG Kingdom, whose finances are massively affected by ICPC, considers to change the direction of one-way
roads in order to increase the number of trucks for daily transports of ICPC. Because reversal of many roads causes confusion, JAG Kingdom decides to reverse at most a single road.



If there is no road such that reversal of the road can improve the transport efficiency, JAG Kingdom need not reverse any roads. Check whether reversal of a single road can improve the current maximum number of trucks for daily transports. And if so, calculate
the maximum number of trucks which take disjoint sets of roads when a one-way road can be reversed, and the number of roads which can be chosen as the road to be reversed to realize the maximum.

Input

The input consists of multiple datasets. The number of dataset is no more than 100.



Each dataset is formatted as follows.



 

The following M lines describe the information of the roads. The i-th line of them contains two integers aiand bi(1 ≤ ai,bi≤ N, ai≠ bi), meaning that the i-th road is directed from ai to bi.



The end of input is indicated by a line containing four zeros.

Output

For each dataset, output two integers separated by a single space in a line as follows: If reversal of a single road improves the current maximum number of trucks for daily transports, the first output integer is the new maximum after reversal of a road,
and the second output integer is the number of roads which can be chosen as the road to be reversed to realize the new maximum. Otherwise, i.e. if the current maximum cannot be increased by any reversal of a road, the first output integer is the current maximum
and the second output integer is 0.

Sample Input
4 4 1 4
1 2
3 1
4 2
3 4
7 8 1 7
1 2
1 3
2 4
3 4
4 5
4 6
5 7
7 6
6 4 5 2
1 2
1 3
4 5
5 6
10 21 9 10
9 1
9 2
9 3
9 4
10 1
10 2
10 3
10 4
1 5
2 5
2 6
3 6
3 7
4 7
4 8
1 8
5 10
6 10
7 10
10 8
10 9
2 15 1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
0 0 0 0
Sample Output
1 2
2 1
0 0
4 6
15 0
Problem Source

JAG Practice Contest for ACM-ICPC Asia Regional 2014

题意:给一个有向图,n个点,m条边,起点S ,终点T。现有非常多个机器人要从S走到T,每条边仅仅能走一个机器人,现要能够改一条边的方向,问最多有多少个机器人能够从S走到T。而且有多少种改法。(假设没有改变边的方向,则改法为0。)

解题:如要没有加条件:能够改一条边。那么这题就是找最多有多少条路要以从起点S走到T。建图:每条有向边的边权为1,用最大流跑一次。那么如今要改一条边的方向:假设要更改的边是走过的边,那么不会使走法添加,有能够还使路的条数降低,所以改的边一定不是满流的边(即走过的边)。如今要改变一条不在走过的边< u  ,  v >变成<v , u>,使得能够增流,那么仅仅要从S沿着没有走过的边到  v 。再从u沿着没有走过的边 到 T。这样就能够使得路的条数增多。

那么这样我们就能够用BFS标记 SF[] 能从S点沿着最大流每条边的残流量>0的边走到的一些点V,再标记
TF[] 能从T点沿着最大流每条边的残流量==0的边走到一些点U(即表示:能从U沿着那些边走到T)。最后仅仅要枚举原来不在走过的边<u , v >,假设:SF[v]==1&&TF[u]==1则改变此边方向能够增流。方案数k+1。

最后的最多机器人数ans = maxflow + k>0 ? 1 : 0  。

#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define captype int const int MAXN = 1010; //点的总数
const int MAXM = 40010; //边的总数
const int INF = 1<<30;
struct EDG{
int to,next;
captype cap;
} edg[MAXM];
int eid,head[MAXN];
int gap[MAXN]; //每种距离(或可觉得是高度)点的个数
int dis[MAXN]; //每一个点到终点eNode 的最短距离
int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边
int pre[MAXN]; void init(){
eid=0;
memset(head,-1,sizeof(head));
}
//有向边 三个參数。无向边4个參数
void addEdg(int u,int v,captype c,captype rc=0){
edg[eid].to=v; edg[eid].next=head[u];
edg[eid].cap=c; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v];
edg[eid].cap=rc; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包含源点和汇点的总点个数,这个一定要注意 memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0; //最大流
int u=sNode;
while(dis[sNode]<n){ //推断从sNode点有没有流向下一个相邻的点
if(u==eNode){ //找到一条可增流的路 for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){
edg[i].cap-=1;
edg[i^1].cap+=1; //可回流的边的流量
}
ans+=1;
u=sNode;
continue;
}
bool flag = false; //推断是否能从u点出发可往相邻点流
int v;
for(int i=cur[u]; i!=-1; i=edg[i].next){
v=edg[i].to;
if(edg[i].cap>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
//假设上面没有找到一个可流的相邻点。则改变出发点u的距离(也可觉得是高度)为相邻可流点的最小距离+1
int Mind= n;
for(int i=head[u]; i!=-1; i=edg[i].next)
if(edg[i].cap>0 && Mind>dis[edg[i].to]){
Mind=dis[edg[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans; //当dis[u]这样的距离的点没有了,也就不可能从源点出发找到一条增广流路径
//由于汇点到当前点的距离仅仅有一种,那么从源点到汇点必定经过当前点。然而当前点又没能找到可流向的点,那么必定断流
dis[u]=Mind+1;//假设找到一个可流的相邻点。则距离为相邻点距离+1,假设找不到,则为n+1
gap[dis[u]]++;
if(u!=sNode) u=edg[pre[u]^1].to; //退一条边
}
return ans;
}
bool flag[MAXM] , SF[MAXN] , TF[MAXN];
void bfs(int s ,bool flag)
{
queue<int>q;
int u , v;
q.push(s );
while(!q.empty())
{
u = q.front(); q.pop();
for(int i=head[u]; ~i ; i=edg[i].next)
{
v=edg[i].to;
if(flag)
{
if(SF[v]||!edg[i].cap)continue;
SF[v]=1;
q.push(v);
}
else{
if(TF[v]||!edg[i^1].cap)continue;
TF[v]=1;
q.push(v);
}
}
}
}
inline void scanf(int& num )
{
char ch;
while(ch=getchar())
{
if(ch>='0'&&ch<='9')break;
}
num = ch-'0';
while(ch=getchar())
{
if(ch<'0'||ch>'9')break;
num = num*10+ch-'0';
}
}
int main()
{
int n,m,vs , vt , u ,v; while(scanf("%d%d%d%d",&n,&m,&vs,&vt)>0&&n+m+vs+vt!=0)
{
init();
for(int i=0; i<m; i++)
{
scanf(u);
scanf(v);
addEdg(u , v ,1);
}
memset(flag , 0 , (m+3)*sizeof(bool));
memset(SF,0,sizeof(SF));
memset(TF,0,sizeof(TF));
int ans , k=0 ;
ans = maxFlow_sap(vs , vt , n );
for(int i=0; i<m; i++)
if(edg[i<<1].cap==0)
flag[i]=1;
SF[vs ] =1; bfs(vs , 1);
TF[vt] = 1; bfs(vt , 0); for(int i=0; i<m; i++)
if(!flag[i]){
v=edg[i<<1|1].to;
u=edg[i<<1].to; if(SF[u]&&TF[v])
k++;
}
if(k) ans++;
printf("%d %d\n",ans , k);
}
}

HNU 13411 Reverse a Road II(最大流+BFS)经典的更多相关文章

  1. 【leetcode】Reverse Linked List II

    Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass. F ...

  2. 14. Reverse Linked List II

    Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass. F ...

  3. 【原创】Leetcode -- Reverse Linked List II -- 代码随笔(备忘)

    题目:Reverse Linked List II 题意:Reverse a linked list from position m to n. Do it in-place and in one-p ...

  4. 92. Reverse Linked List II

    题目: Reverse a linked list from position m to n. Do it in-place and in one-pass. For example:Given 1- ...

  5. lc面试准备:Reverse Linked List II

    1 题目 Reverse a linked list from position m to n. Do it in-place and in one-pass. For example:Given 1 ...

  6. 【LeetCode练习题】Reverse Linked List II

    Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass. F ...

  7. [Linked List]Reverse Linked List,Reverse Linked List II

    一.Reverse Linked List  (M) Reverse Linked List II (M) Binary Tree Upside Down (E) Palindrome Linked ...

  8. LeetCode之“链表”:Reverse Linked List && Reverse Linked List II

    1. Reverse Linked List 题目链接 题目要求: Reverse a singly linked list. Hint: A linked list can be reversed ...

  9. 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 线段树维护dp

    题目 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 链接 http://www.lydsy.com/JudgeOnline/proble ...

随机推荐

  1. Hibernate所有缓存机制详解

    hibernate提供的一级缓存 hibernate是一个线程对应一个session,一个线程可以看成一个用户.也就是说session级缓存(一级缓存)只能给一个线程用,别的线程用不了,一级缓存就是和 ...

  2. 设计高效SQL: 一种视觉的方法

    行; 这听起来很直观,但最有效的方法是什么?你可能有如下选择:行,其中有50行你必须剔除行,其中有450行你必须剔除行中剔除50行听起来比从500行中剔除450行更高效,但是请记住:聚簇,或者说,数据 ...

  3. 【数论】【快速幂】bzoj1008 [HNOI2008]越狱

    根据 高中的数学知识 即可推出 ans=m^n-m*(m-1)^(n-1) .快速幂取模搞一下即可. #include<cstdio> using namespace std; typed ...

  4. 个人python学习路线记录

    一.入门视频 零基础入门学习Python --小甲鱼 二.博客园 python快速教程 http://www.cnblogs.com/vamei/archive/2012/09/13/2682778. ...

  5. iOS开发——NSIBPrototypingLayoutConstraint原型约束造成的莫名问题

    问题描述: 使用Autolayout 从xib加载后代码添加Constraint,xib中没有任何约束,只是创建了n个View并拖了线方便调用   在运行过程中产生约束冲突错误, NSIBProtot ...

  6. JNI之数据类型

    1. JNIEnv 作用 JNIEnv 概念 : 是一个线程相关的结构体, 该结构体代表了 Java 在本线程的运行环境 ; JNIEnv 与 JavaVM : 注意区分这两个概念; -- JavaV ...

  7. 【转载】Mini2440启动配置文件说明

    对于mini2440,虽然root_qtopia这个文件系统的GUI是基于Qtopia的,但其初始化启动过程却是由大部分由busybox完成,Qtopia(qpe)只是在启动的最后阶段被开启. 由于默 ...

  8. js原生创建模拟事件和自定义事件的方法

    让我万万没想到的是,原来<JavaScript高级程序设计(第3版)>里面提到的方法已经是过时的了.后来我查看了MDN,才找到了最新的方法. 模拟鼠标事件MDN上已经说得很清楚,尽管为了保 ...

  9. linux tail 命令详解!Linux 文件内容查看工具介绍

    转:http://blog.csdn.net/carzyer/article/details/4759593 1.cat 显示文件连接文件内容的工具: cat 是一个文本文件查看和连接工具.查看一个文 ...

  10. getopt使用

    参考: http://www.gnu.org/software/libc/manual/html_node/Example-of-Getopt.html http://en.wikipedia.org ...