Reverse a Road II
Time Limit: 10000ms, Special Time Limit:25000ms, Memory Limit:65536KB
Total submit users: 10, Accepted users: 6
Problem 13411 : No special judgement
Problem description

JAG Kingdom is a strange kingdom such that its N cities are connected only by one-way roads. The N cities are numbered 1 through N. ICPC (International Characteristic Product Corporation) transports its products from the factory at the city S to the storehouse
at the city T in JAG Kingdom every day. For efficiency, ICPC uses multiple trucks at once. Each truck starts from S and reaches T on the one-way road network, passing through some cities (or directly). In order to reduce risks of traffic jams and accidents,
no pair of trucks takes the same road.



Now, ICPC wants to improve the efficiency of daily transports, while ICPC operates daily transports by as many trucks as possible under the above constraint. JAG Kingdom, whose finances are massively affected by ICPC, considers to change the direction of one-way
roads in order to increase the number of trucks for daily transports of ICPC. Because reversal of many roads causes confusion, JAG Kingdom decides to reverse at most a single road.



If there is no road such that reversal of the road can improve the transport efficiency, JAG Kingdom need not reverse any roads. Check whether reversal of a single road can improve the current maximum number of trucks for daily transports. And if so, calculate
the maximum number of trucks which take disjoint sets of roads when a one-way road can be reversed, and the number of roads which can be chosen as the road to be reversed to realize the maximum.

Input

The input consists of multiple datasets. The number of dataset is no more than 100.



Each dataset is formatted as follows.



 

The following M lines describe the information of the roads. The i-th line of them contains two integers aiand bi(1 ≤ ai,bi≤ N, ai≠ bi), meaning that the i-th road is directed from ai to bi.



The end of input is indicated by a line containing four zeros.

Output

For each dataset, output two integers separated by a single space in a line as follows: If reversal of a single road improves the current maximum number of trucks for daily transports, the first output integer is the new maximum after reversal of a road,
and the second output integer is the number of roads which can be chosen as the road to be reversed to realize the new maximum. Otherwise, i.e. if the current maximum cannot be increased by any reversal of a road, the first output integer is the current maximum
and the second output integer is 0.

Sample Input
4 4 1 4
1 2
3 1
4 2
3 4
7 8 1 7
1 2
1 3
2 4
3 4
4 5
4 6
5 7
7 6
6 4 5 2
1 2
1 3
4 5
5 6
10 21 9 10
9 1
9 2
9 3
9 4
10 1
10 2
10 3
10 4
1 5
2 5
2 6
3 6
3 7
4 7
4 8
1 8
5 10
6 10
7 10
10 8
10 9
2 15 1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
0 0 0 0
Sample Output
1 2
2 1
0 0
4 6
15 0
Problem Source

JAG Practice Contest for ACM-ICPC Asia Regional 2014

题意:给一个有向图,n个点,m条边,起点S ,终点T。现有非常多个机器人要从S走到T,每条边仅仅能走一个机器人,现要能够改一条边的方向,问最多有多少个机器人能够从S走到T。而且有多少种改法。(假设没有改变边的方向,则改法为0。)

解题:如要没有加条件:能够改一条边。那么这题就是找最多有多少条路要以从起点S走到T。建图:每条有向边的边权为1,用最大流跑一次。那么如今要改一条边的方向:假设要更改的边是走过的边,那么不会使走法添加,有能够还使路的条数降低,所以改的边一定不是满流的边(即走过的边)。如今要改变一条不在走过的边< u  ,  v >变成<v , u>,使得能够增流,那么仅仅要从S沿着没有走过的边到  v 。再从u沿着没有走过的边 到 T。这样就能够使得路的条数增多。

那么这样我们就能够用BFS标记 SF[] 能从S点沿着最大流每条边的残流量>0的边走到的一些点V,再标记
TF[] 能从T点沿着最大流每条边的残流量==0的边走到一些点U(即表示:能从U沿着那些边走到T)。最后仅仅要枚举原来不在走过的边<u , v >,假设:SF[v]==1&&TF[u]==1则改变此边方向能够增流。方案数k+1。

最后的最多机器人数ans = maxflow + k>0 ? 1 : 0  。

#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define captype int const int MAXN = 1010; //点的总数
const int MAXM = 40010; //边的总数
const int INF = 1<<30;
struct EDG{
int to,next;
captype cap;
} edg[MAXM];
int eid,head[MAXN];
int gap[MAXN]; //每种距离(或可觉得是高度)点的个数
int dis[MAXN]; //每一个点到终点eNode 的最短距离
int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边
int pre[MAXN]; void init(){
eid=0;
memset(head,-1,sizeof(head));
}
//有向边 三个參数。无向边4个參数
void addEdg(int u,int v,captype c,captype rc=0){
edg[eid].to=v; edg[eid].next=head[u];
edg[eid].cap=c; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v];
edg[eid].cap=rc; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包含源点和汇点的总点个数,这个一定要注意 memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0; //最大流
int u=sNode;
while(dis[sNode]<n){ //推断从sNode点有没有流向下一个相邻的点
if(u==eNode){ //找到一条可增流的路 for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){
edg[i].cap-=1;
edg[i^1].cap+=1; //可回流的边的流量
}
ans+=1;
u=sNode;
continue;
}
bool flag = false; //推断是否能从u点出发可往相邻点流
int v;
for(int i=cur[u]; i!=-1; i=edg[i].next){
v=edg[i].to;
if(edg[i].cap>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
//假设上面没有找到一个可流的相邻点。则改变出发点u的距离(也可觉得是高度)为相邻可流点的最小距离+1
int Mind= n;
for(int i=head[u]; i!=-1; i=edg[i].next)
if(edg[i].cap>0 && Mind>dis[edg[i].to]){
Mind=dis[edg[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans; //当dis[u]这样的距离的点没有了,也就不可能从源点出发找到一条增广流路径
//由于汇点到当前点的距离仅仅有一种,那么从源点到汇点必定经过当前点。然而当前点又没能找到可流向的点,那么必定断流
dis[u]=Mind+1;//假设找到一个可流的相邻点。则距离为相邻点距离+1,假设找不到,则为n+1
gap[dis[u]]++;
if(u!=sNode) u=edg[pre[u]^1].to; //退一条边
}
return ans;
}
bool flag[MAXM] , SF[MAXN] , TF[MAXN];
void bfs(int s ,bool flag)
{
queue<int>q;
int u , v;
q.push(s );
while(!q.empty())
{
u = q.front(); q.pop();
for(int i=head[u]; ~i ; i=edg[i].next)
{
v=edg[i].to;
if(flag)
{
if(SF[v]||!edg[i].cap)continue;
SF[v]=1;
q.push(v);
}
else{
if(TF[v]||!edg[i^1].cap)continue;
TF[v]=1;
q.push(v);
}
}
}
}
inline void scanf(int& num )
{
char ch;
while(ch=getchar())
{
if(ch>='0'&&ch<='9')break;
}
num = ch-'0';
while(ch=getchar())
{
if(ch<'0'||ch>'9')break;
num = num*10+ch-'0';
}
}
int main()
{
int n,m,vs , vt , u ,v; while(scanf("%d%d%d%d",&n,&m,&vs,&vt)>0&&n+m+vs+vt!=0)
{
init();
for(int i=0; i<m; i++)
{
scanf(u);
scanf(v);
addEdg(u , v ,1);
}
memset(flag , 0 , (m+3)*sizeof(bool));
memset(SF,0,sizeof(SF));
memset(TF,0,sizeof(TF));
int ans , k=0 ;
ans = maxFlow_sap(vs , vt , n );
for(int i=0; i<m; i++)
if(edg[i<<1].cap==0)
flag[i]=1;
SF[vs ] =1; bfs(vs , 1);
TF[vt] = 1; bfs(vt , 0); for(int i=0; i<m; i++)
if(!flag[i]){
v=edg[i<<1|1].to;
u=edg[i<<1].to; if(SF[u]&&TF[v])
k++;
}
if(k) ans++;
printf("%d %d\n",ans , k);
}
}

HNU 13411 Reverse a Road II(最大流+BFS)经典的更多相关文章

  1. 【leetcode】Reverse Linked List II

    Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass. F ...

  2. 14. Reverse Linked List II

    Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass. F ...

  3. 【原创】Leetcode -- Reverse Linked List II -- 代码随笔(备忘)

    题目:Reverse Linked List II 题意:Reverse a linked list from position m to n. Do it in-place and in one-p ...

  4. 92. Reverse Linked List II

    题目: Reverse a linked list from position m to n. Do it in-place and in one-pass. For example:Given 1- ...

  5. lc面试准备:Reverse Linked List II

    1 题目 Reverse a linked list from position m to n. Do it in-place and in one-pass. For example:Given 1 ...

  6. 【LeetCode练习题】Reverse Linked List II

    Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass. F ...

  7. [Linked List]Reverse Linked List,Reverse Linked List II

    一.Reverse Linked List  (M) Reverse Linked List II (M) Binary Tree Upside Down (E) Palindrome Linked ...

  8. LeetCode之“链表”:Reverse Linked List && Reverse Linked List II

    1. Reverse Linked List 题目链接 题目要求: Reverse a singly linked list. Hint: A linked list can be reversed ...

  9. 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 线段树维护dp

    题目 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 链接 http://www.lydsy.com/JudgeOnline/proble ...

随机推荐

  1. POJ 2315:Football Game(博弈论)

    [题目链接] http://poj.org/problem?id=2315 [题目大意] 两名球员轮流从N个球中挑出不多于M个射门,每个球半径都是R,离球门S. 每次只能踢出L以内的距离.进最后一个球 ...

  2. 【字符串哈希】bzoj3098 Hash Killer II

    教育我们做Rabin-Karp的时候一定要把模数取大?还是上溢好了. #include<cstdio> #include<cstdlib> using namespace st ...

  3. Java读取文本文件

    try { // 防止文件建立或读取失败,用catch捕捉错误并打印,也可以throw StringBuilder stringBuilder = new StringBuilder(); // 读入 ...

  4. cssz中<a>标签鼠标选中去除选中边框

    IE: <a href="#" hidefocus="true"></a> 非IE: a:focus { outline:none; } ...

  5. GetAdaptersInfo & GetAdaptersAddresses

    I use GetAdaptersInfo to get MAC addresses of interfaces.   GetAdaptersInfo exist on old and new ver ...

  6. JavaScript之链式结构序列化1

    一.概述 在JavaScript中,链式模式代码,太多太多,如下: if_else: if(...){ //TODO }else if(...){ //TODO }else{ //TODO } swi ...

  7. 使用Ant项目打包

    一.前沿 前段时间公司为了做一个新闻发布系统,就使用了开源的JEECMS系统,(非人类啊,泪~~~),项目不是maven构建的,项目的打包部署非常的麻烦,没办法只能使用Ant,Ant是比较古老的打包部 ...

  8. html5:localStorage储存

    实例:刷新值会增长,关掉浏览器,再打开,值会在原基础上增长 if(localStorage.pagecount){ localStorage.pagecount=Number(localStorage ...

  9. ArrayAdapter、SimpleAdapter和BaseAdapter示例代码

    import android.content.Context; import android.util.Pair; import android.view.View; import android.v ...

  10. 64位的centos6.9的vnc-sever的安装及桌面环境安装

    1.VNC (Virtual Network Computer)是虚拟网络计算机的缩写.VNC 是在基于 UNIX 和 Linux 操作系统的免费的开源软件,远程控制能力强大,高效实用,其性能可以和 ...