Description

传送门

Solution

官方题解

然后我谈下个人理解。由于我们的两个条件只要任意满足,则在p的图中i有两种连边法:i->p[i],i->p[p[i]]。

我们考虑在a的图中i->a[i]。可得我们要把p图塞到a图里。

具体分析看题解吧,题解图画的很清晰呀。然后。。就各种dp+乱搞了。

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int mod=1e9+;
int n,x;
int a[];
int in[],col[],cir[];
int len[],cnt[];
ll dp[],ans=;
int main()
{
scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%d",&a[i]);
for (int i=;i<=n;i++)
{
in[a[i]]++;
x=i;while (!col[x]) {col[x]=i;x=a[x];}
if (col[x]!=i) continue;
while (!cir[x]) {cir[x]=i;x=a[x];}
}
for (int i=;i<=n;i++)
if ((cir[i]&&in[i]>)||(!cir[i]&&in[i]>)) return printf(""),; int js;
for (int i=;i<=n;i++)
{
if (in[i]) continue;
x=i;js=;
while (!cir[x]) {js++;x=a[x];}
len[x]=js;
}
int _len,fir,st,id;
for (int i=;i<=n;i++)
{
if (!cir[i]) continue;
x=i;
_len=fir=st=id=;
for(;cir[x];x=a[x])
{
id++;cir[x]=;
if(len[x])
{
if (!fir){fir=st=id;_len=len[x];}
else
{
ans=ans*((len[x]<id-st)+(len[x]<=id-st))%mod;
if (!ans) return printf(""),;st=id;
}
}
}
if (fir)
{
ans=ans*((_len<id+fir-st)+(_len<=id+fir-st))%mod;
if (!ans)return printf(""),;
}
else cnt[id]++;
}
for (int i=;i<=n;i++)
{
if (!cnt[i]) continue;
dp[]=;
if (i>&&i%)
for (int j=;j<=cnt[i];j++)
{
dp[j]=dp[j-]*%mod;
if (j>) dp[j]=(dp[j]+dp[j-]*(j-)*i%mod)%mod;
} else
for (int j=;j<=cnt[i];j++)
{
dp[j]=dp[j-];
if (j>) dp[j]=(dp[j]+dp[j-]*(j-)*i%mod)%mod;
}
ans=ans*dp[cnt[i]]%mod;
if (!ans) return printf(""),;
}
cout<<ans;
}

[agc008E]Next or Nextnext-[dp+思考题]的更多相关文章

  1. [AGC008E] Next or Nextnext [环套树森林+结论讨论]

    题面 传送门 思路 p到a 首先,本题中如果对于所有的$i$,连边$<i,p_i>$,那么可以得到一批环 那么这个题另外一点就是,可以变成连边$<i,p_{p_i}>$ 我们分 ...

  2. AGC008E Next or Nextnext(组合计数,神奇思路)

    神仙题. 排列计数,一种常见的做法是 \(i\) 向 \(p_i\) 连边. 然而这里这个就逼迫我们只能从 \(i\) 向 \(a_i\) 连边. 不过没关系,考虑从 \(i\) 向 \(p_i\) ...

  3. @atcoder - AGC008E@ Next or Nextnext

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个长度为 N 的序列 a,问有多少排列 p,满足对于每一个 ...

  4. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

  5. NOIp2018模拟赛四十

    今天太晚了...题解到时候补吧(flag立好) 成绩:100+0+0=100 感觉A题本质暴力贪心?C题一道水题我居然没做...亏爆 A:[agc011e]increasing numbers B:[ ...

  6. AGC008E:Next or Nextnext

    传送门 考虑转化成图论问题,\(i\) 向 \(p_i\) 连边,那么合法方案一定是形成了若干个简单环或自环 考虑一个环内的情况: 如果 \(a_i=p_i\),那么 \(i\) 向 \(a_i\) ...

  7. [agc011F]Train Service Planning-[线段树优化dp+神秘思考题]

    Description 传送门 Solution 请围观lhx大佬的博客(大佬写的太好了我都没有写的动力了em) Code #include<iostream> #include<c ...

  8. hdu4939 Stupid Tower Defense (DP)

    2014多校7 第二水的题 4939 Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131 ...

  9. POJ2677 Tour(DP+双调欧几里得旅行商问题)

    Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3929   Accepted: 1761 Description ...

随机推荐

  1. 5.servlet 上传文件

    一.maven依赖 <dependency> <groupId>commons-fileupload</groupId> <artifactId>com ...

  2. 2.Servlet基础总结

    一.简介 1.什么是Servlet Servlet(Server Applet),全称Java Servlet,未有中文译文.是用Java编写的服务器端程序.其主要功能在于交互式地浏览和修改数据,生成 ...

  3. ExpressRoute 线路预配工作流和线路状态

    本页从较高层面引导你完成服务预配和路由配置工作流. 下图和相应的步骤说明了预配端到端 ExpressRoute 线路所要执行的任务. 使用 PowerShell 配置 ExpressRoute 线路. ...

  4. vue-cli的webpack模板项目配置文件说明

    如果没有vue-cli,那么进行vue项目的开发环境配置将是很费力的一件事情,现在脚手架可以快速构建一个开发环境,是很不错的.不过对于脚手架构建的配置,还是要大概了解一下,方便自己调试配置. 初始化一 ...

  5. Vue2学习笔记:键盘事件

    Vue2键盘事件:keydown/keyup... 1.使用 <!DOCTYPE html> <html> <head> <title></tit ...

  6. 使用CAReplicatorLayer [2]

    使用CAReplicatorLayer [2] 工具类 // // Math.h // MathEquation // // Created by YouXianMing on 15/11/20. / ...

  7. svn检出项目,Project *** is already imported into workspace

    1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.如果从svn检出的项目   Import  ----  Existing Maven Pro ...

  8. fun()可拆分赋值 fun()可以拆, 变成 fun 和 括号, fun 可以赋值

    2. 函数名可以赋值给其他变量   --->   就是 func()可以拆 def fun (): print("哈哈") a = fun # 拆分 fun()的    fu ...

  9. [WHY]Hello, Worktile~

    本来是水水的去听一听云计算大会,感受一下氛围的, 万万没想到,竟然意外的參观了Worktile,这也成了北京之旅最值得纪念的记忆. 先是路上看到QQ有个好友请求,备注是Worktile市场的小泽. 从 ...

  10. 「PKUWC2018」随机算法

    题目 思博状压写不出是不是没救了呀 首先我们直接状压当前最大独立集的大小显然是不对的,因为我们的答案还和我们考虑的顺序有关 我们发现最大独立集的个数好像不是很多,可能是\(O(n)\)级别的,于是我们 ...