sparkSQL1.1入门之四:深入了解sparkSQL执行计划
前面两章花了不少篇幅介绍了SparkSQL的执行过程,非常多读者还是认为当中的概念非常抽象。比方Unresolved LogicPlan、LogicPlan、PhysicalPlan是长得什么样子,没点印象。仅仅知道名词,感觉非常缥缈。
本章就着重介绍一个工具hive/console,来加深读者对sparkSQL的执行计划的理解。
该工具是给开发人员使用,在编译生成的安装部署包中并没有;该工具须要使用sbt编译执行。要使用该工具,须要具备下面条件:
- spark1.1.0源代码
- hive0.12源代码并编译
- 配置环境变量
ant clean package -Dhadoop.version=2.2.0 -Dhadoop-0.23.version=2.2.0 -Dhadoop.mr.rev=23
export HIVE_HOME=/app/hadoop/hive012/src/build/dist
export HIVE_DEV_HOME=/app/hadoop/hive012/src
export HADOOP_HOME=/app/hadoop/hadoop220
D:启动
sbt/sbt hive/console
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
在控制台的scala提示符下,输入:help能够获取帮助,输入Tab键会陈列出当前可用的方法、函数、及变量。下图为按Tab键时显示的方法和函数。随着用户不断使用该控制态,用户定义或使用过的变量也会陈列出来。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
/*源自 sql/hive/src/main/scala/org/apache/spark/sql/hive/TestHive.scala */
// The test tables that are defined in the Hive QTestUtil.
// /itests/util/src/main/java/org/apache/hadoop/hive/ql/QTestUtil.java
val hiveQTestUtilTables = Seq(
TestTable("src",
"CREATE TABLE src (key INT, value STRING)".cmd,
s"LOAD DATA LOCAL INPATH '${getHiveFile("data/files/kv1.txt")}' INTO TABLE src".cmd),
TestTable("src1",
"CREATE TABLE src1 (key INT, value STRING)".cmd,
s"LOAD DATA LOCAL INPATH '${getHiveFile("data/files/kv3.txt")}' INTO TABLE src1".cmd),
TestTable("srcpart", () => {
runSqlHive(
"CREATE TABLE srcpart (key INT, value STRING) PARTITIONED BY (ds STRING, hr STRING)")
for (ds <- Seq("2008-04-08", "2008-04-09"); hr <- Seq("11", "12")) {
runSqlHive(
s"""LOAD DATA LOCAL INPATH '${getHiveFile("data/files/kv1.txt")}'
|OVERWRITE INTO TABLE srcpart PARTITION (ds='$ds',hr='$hr')
""".stripMargin)
}
}),
......
)
由于要使用hive0.12的測试数据。所以须要定义两个环境变量:HIVE_HOME和HIVE_DEV_HOME。假设使用hive0.13的话。用户须要更改到对应文件夹:
/*源自 sql/hive/src/main/scala/org/apache/spark/sql/hive/TestHive.scala */
/** The location of the compiled hive distribution */
lazy val hiveHome = envVarToFile("HIVE_HOME")
/** The location of the hive source code. */
lazy val hiveDevHome = envVarToFile("HIVE_DEV_HOME")
/* 源自 project/SparkBuild.scala */
object Hive {
lazy val settings = Seq(
javaOptions += "-XX:MaxPermSize=1g",
// Multiple queries rely on the TestHive singleton. See comments there for more details.
parallelExecution in Test := false,
// Supporting all SerDes requires us to depend on deprecated APIs, so we turn off the warnings
// only for this subproject.
scalacOptions <<= scalacOptions map { currentOpts: Seq[String] =>
currentOpts.filterNot(_ == "-deprecation")
},
initialCommands in console :=
"""
|import org.apache.spark.sql.catalyst.analysis._
|import org.apache.spark.sql.catalyst.dsl._
|import org.apache.spark.sql.catalyst.errors._
|import org.apache.spark.sql.catalyst.expressions._
|import org.apache.spark.sql.catalyst.plans.logical._
|import org.apache.spark.sql.catalyst.rules._
|import org.apache.spark.sql.catalyst.types._
|import org.apache.spark.sql.catalyst.util._
|import org.apache.spark.sql.execution
|import org.apache.spark.sql.hive._
|import org.apache.spark.sql.hive.test.TestHive._
|import org.apache.spark.sql.parquet.ParquetTestData""".stripMargin
)
}
2:经常使用操作
//在控制台逐行执行
case class Person(name:String, age:Int, state:String)
sparkContext.parallelize(Person("Michael",29,"CA")::Person("Andy",30,"NY")::Person("Justin",19,"CA")::Person("Justin",25,"CA")::Nil).registerTempTable("people")
val query= sql("select * from people")
query.printSchema
query.queryExecution
query.queryExecution.logical
query.queryExecution.analyzed
2.5 查看优化后的LogicalPlan
query.queryExecution.optimizedPlan
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
query.queryExecution.sparkPlan
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
query.toDebugString
以下看看这些数据源的schema:
{
"fullname": "Sean Kelly",
"org": "SK Consulting",
"emailaddrs": [
{"type": "work", "value": "kelly@seankelly.biz"},
{"type": "home", "pref": 1, "value": "kelly@seankelly.tv"}
],
"telephones": [
{"type": "work", "pref": 1, "value": "+1 214 555 1212"},
{"type": "fax", "value": "+1 214 555 1213"},
{"type": "mobile", "value": "+1 214 555 1214"}
],
"addresses": [
{"type": "work", "format": "us",
"value": "1234 Main StnSpringfield, TX 78080-1216"},
{"type": "home", "format": "us",
"value": "5678 Main StnSpringfield, TX 78080-1316"}
],
"urls": [
{"type": "work", "value": "http://seankelly.biz/"},
{"type": "home", "value": "http://seankelly.tv/"}
]
}
去空格和换行符后保存为/home/mmicky/data/nestjson.json,使用jsonFile读入并注冊成表jsonPerson,然后定义一个查询jsonQuery:
jsonFile("/home/mmicky/data/nestjson.json").registerTempTable("jsonPerson")
val jsonQuery = sql("select * from jsonPerson")
jsonQuery.printSchema
jsonQuery.queryExecution
parquetFile("/home/mmicky/data/spark/wiki_parquet").registerTempTable("parquetWiki")
val parquetQuery = sql("select * from parquetWiki")
parquetQuery.printSchema
查询parquetQuery的整个执行计划:
parquetQuery.queryExecution
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
以下我们使用sales表看看其schema和整个执行计划。首先定义一个查询hiveQuery:
val hiveQuery = sql("select * from sales")
hiveQuery.printSchema
查看hiveQuery的整个执行计划:
hiveQuery.queryExecution
从上面能够看出,来自jsonFile、parquetFile、hive数据的物理计划还有有非常大差别的。
sql("select state,avg(age) from people group by state").queryExecution
sql("select state,avg(age) from people group by state").toDebugString
sql("select a.name,b.name from people a join people b where a.name=b.name").queryExecution
sql("select a.name,b.name from people a join people b where a.name=b.name").toDebugString
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
sql("select distinct a.name,b.name from people a join people b where a.name=b.name").queryExecution
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
sql("select distinct a.name,b.name from people a join people b where a.name=b.name").toDebugString
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
sql("select name from (select * from people where age >=19) a where a.age <30").queryExecution
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
上面的查询,在Optimized的过程中。将age>=19和age<30这两个Filter合并了,合并成((age>=19) && (age<30))。事实上上面还做了一个其它的优化,就是project的下推,子查询使用了表的全部列,而主查询使用了列name。在查询数据的时候子查询优化成仅仅查列name。
sql("select name from (select name,state as location from people) a where location='CA'").queryExecution
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
sql("select name,1+2 from people").queryExecution
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
在Optimized的过程中,将常量表达式直接累加在一起。用新的列名来表示。
object CombineFilters extends Rule[LogicalPlan] {
def apply(plan: LogicalPlan): LogicalPlan = plan transform {
case Filter(c1, Filter(c2, grandChild)) =>
Filter(And(c1,c2),grandChild)
}
}
val query= sql("select * from people").where('age >=19).where('age <30)
query.queryExecution.analyzed
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
最后。使用自己定义优化函数进行优化:
CombineFilters(query.queryExecution.analyzed)
能够看到两个Filter合并在一起了。
val hiveQuery = sql("SELECT * FROM (SELECT * FROM src) a")
hiveQuery.queryExecution.analyzed
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
然后,直接用transform将自己定义的rule:
hiveQuery.queryExecution.analyzed transform {
case Project(projectList, child) if projectList == child.output => child
}
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYm9va19tbWlja3k=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
该transform在LogicPlan的主查询和子查询的project同样时合并project。
sparkSQL1.1入门之四:深入了解sparkSQL执行计划的更多相关文章
- sparkSQL1.1入门之二:sparkSQL执行架构
在介绍sparkSQL之前.我们首先来看看,传统的关系型数据库是怎么执行的.当我们提交了一个非常easy的查询: SELECT a1,a2,a3 FROM tableA Where con ...
- Spark入门实战系列--6.SparkSQL(上)--SparkSQL简介
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .SparkSQL的发展历程 1.1 Hive and Shark SparkSQL的前身是 ...
- sparkSQL1.1入门
http://blog.csdn.net/book_mmicky/article/details/39288715 2014年9月11日,Spark1.1.0忽然之间发布.笔者立即下载.编译.部署了S ...
- sparkSQL1.1入门之十:总结
回想一下,在前面几章中,就sparkSQL1.1.0基本概念.执行架构.基本操作和有用工具做了基本介绍. 基本概念: SchemaRDD Rule Tree LogicPlan Parser Anal ...
- VS2010/MFC编程入门之四(MFC应用程序框架分析)
VS2010/MFC编程入门之四(MFC应用程序框架分析)-软件开发-鸡啄米 http://www.jizhuomi.com/software/145.html 上一讲鸡啄米讲的是VS2010应用 ...
- JBPM4入门——9.自动节点单线执行
JBPM入门系列文章: JBPM4入门——1.jbpm简要介绍 JBPM4入门——2.在eclipse中安装绘制jbpm流程图的插件 JBPM4入门——3.JBPM4开发环境的搭建 JBPM4入门—— ...
- oracle查看执行计划入门
基于Oracle的应用系统很多的性能问题都是由应用系统的SQL性能低劣引起的,因此SQL的性能优化非常重要.要分析与优化SQL的性能,一般是通过查看该SQL的执行计划,然后通过执行计划有针对性地对SQ ...
- sql server 执行计划(execution plan)介绍
大纲:目的介绍sql server 中执行计划的大致使用,当遇到查询性能瓶颈时,可以发挥用处,而且带有比较详细的学习文档和计划,阅读者可以按照我计划进行,从而达到对执行计划一个比较系统的学习. 什么是 ...
- SQL优化 MySQL版 -分析explain SQL执行计划与Extra
Extra 作者 : Stanley 罗昊 [转载请注明出处和署名,谢谢!] 注:此文章必须有一定的Mysql基础,或观看执行计划入门篇传送门: https:.html 终于总结到哦SQK执行计划的最 ...
随机推荐
- 使用sigc++插槽系统
http://www.cppblog.com/gaimor/archive/2010/02/22/108236.html?opt=admin 我所知的c++插槽系统由3个boost的,sigslot的 ...
- json的工具按照键进行排序
浏览器中,所有涉及json的工具会按照键进行排序,这个与实际的查询的数组的顺序有出入,见下图:
- 关于gcc、glibc和binutils模块之间的关系,以及在现有系统上如何升级的总结
http://blog.csai.cn/user1/265/archives/2005/2465.html 一.关于gcc.glibc和binutils模块之间的关系 1.gcc(gnu collec ...
- jquery局部打印插件使用
基于jquery库的jquery.PrintArea.js插件源代码为: (function ($) { var printAreaCount = 0; $.fn.printArea = functi ...
- MSSQL语句批量替换表中某列字段内容的某个字符
UPdate 表 Set 字段名=REPLACE(字段名,'查找目标字符','要替换的字符') 比如:在Products表中把字段CharCode中含有ch-的字符全部替换为dw- UPDATE Pr ...
- 【独立开发人员er Cocos2d-x实战 001】csb文件导出和载入
使用cocos studio进行资源文件导出: 然后在cocosproject中进行载入csb文件: auto myLayout = CSLoader::createNode("/res/ ...
- Android API之android.content.AsyncQueryHandler
android.content.AsyncQueryHandler A helper class to help make handling asynchronous ContentResolver ...
- 转载:在PHP语言中使用JSON和将json还原成数组
一.json_encode() 1 2 3 4 <?php $arr = array ('a'=>1,'b'=>2,'c'=>3,'d'=>4,'e'=>5); e ...
- SVN解决创建文件时不带锁
解决创建文件时不带锁 C:\Documents and Settings\你的用户名\Application Data\Subversion 找到上面的用户路径 打开config添加 ### ...
- WordPress网站搬家全过程 亲身体验WordPress搬家,总结几点
需要移动的文件主要是网站文件和数据库文件,如果是简单的wordpress 操作就是:备份网站文件,导出数据库文件,上传网站文件,导入数据库文件,移动网站文件,修改wordpress的wp-conf ...