假设确定了最终所得向量的方向,则应该选择所有在该方向上投影为正的向量。按极角序排序后这显然是一段连续区间。最终向量方向很难枚举,但对于某个向量,在其上投影为正的向量与其夹角范围是(-π/2,π/2),所以只要枚举所有极角差不超过π的极长区间就可以了。这里的区间不是向量区间而是极角区间,相当于一条过原点的直线在旋转,所以双指针移动时每个向量区间都要更新答案。为了方便倍长向量数组,注意这样对于增加的那一半,极角需要加上2π。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n;
const double PI=3.14159266;
ll ans;
struct vector
{
int x,y;double angle;
bool operator <(const vector&a) const
{
return angle<a.angle;
}
vector operator +(const vector&a) const
{
return (vector){x+a.x,y+a.y};
}
vector operator -(const vector&a) const
{
return (vector){x-a.x,y-a.y};
}
ll len(){return 1ll*x*x+1ll*y*y;}
}a[N<<];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5099.in","r",stdin);
freopen("bzoj5099.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i].x=read(),a[i].y=read(),a[i].angle=atan2(a[i].x,a[i].y);
sort(a+,a+n+);
for (int i=n+;i<=n*;i++) a[i]=a[i-n],a[i].angle+=*PI;
vector cur=(vector){,};
int x=;
for (int i=;i<=n;i++)
{
while (x<n*&&a[x+].angle-a[i].angle<=PI) ans=max(ans,(cur=cur+a[++x]).len());
ans=max(ans,(cur=cur-a[i]).len());
}
cout<<ans;
return ;
}

BZOJ5099 POI2018Pionek的更多相关文章

  1. 【BZOJ5099】[POI2018]Pionek 几何+双指针

    [BZOJ5099][POI2018]Pionek Description 在无限大的二维平面的原点(0,0)放置着一个棋子.你有n条可用的移动指令,每条指令可以用一个二维整数向量表示.每条指令最多只 ...

  2. [BZOJ5099]Pionek

    Description 给 \(n\) (\(n\le 2\times 10 ^5\)) 个向量,现在你在 \((0,0)\) ,选择一些向量使你走的最远. Solution 自己的想法:按极角排序后 ...

  3. bzoj5099: [POI2018]Pionek

    Description 在无限大的二维平面的原点(0,0)放置着一个棋子.你有n条可用的移动指令,每条指令可以用一个二维整数向量表 示.每条指令最多只能执行一次,但你可以随意更改它们的执行顺序.棋子可 ...

  4. 【bzoj5099】[POI2018]Pionek 双指针法

    题目描述 给你 $n$ 个平面向量,选出它们中的一部分,使得它们的和的长度最大.求这个最大长度的平方. 输入 第一行包含一个正整数n(n<=200000),表示指令条数. 接下来n行,每行两个整 ...

  5. bzoj5099 [POI2018]Pionek 双指针

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5099 题解 这道题做法似乎挺单一的. (一开始想了个假做法 向量和的长度等于所有向量在其方向上 ...

  6. POI2018

    [BZOJ5099][POI2018]Pionek(极角排序+two pointers) 几个不会严谨证明的结论: 1.将所有向量按极角排序,则答案集合一定是连续的一段. 当答案方向确定时,则一个向量 ...

随机推荐

  1. SpringBoot日记——SpringMvc自动配置与扩展篇

    为了让SpringBoot保持对SpringMVC的全面支持和扩展,而且还要维持SpringBoot不写xml配置的优势,我们需要添加一些简单的配置类即可实现: 通常我们使用的最多的注解是: @Bea ...

  2. JDBC Mysql 驱动连接异常

    在做JDBC连接Mysql的时候遇到了三个异常: 第一个是:mysql8.0 caching_sha2_password 这个异常是由于是因为在mysql8.0之前的密码规则是mysql_native ...

  3. web小结

    一.ajax 1.用于前端向服务器异步获取数据 json数组:可以直接通过数组下标获取到值 json对象:可以用“data.xx”获取到值 2.注意事项 同时请求两个ajax时,容易出现异常,第一个a ...

  4. XML学习(一)

    实体引用 在 XML 中,一些字符拥有特殊的意义. 如果您把字符 "<" 放在 XML 元素中,会发生错误,这是因为解析器会把它当作新元素的开始. 这样会产生 XML 错误: ...

  5. 2019第十届蓝桥杯C++B组题解(赛后重写的,不确保答案正确性,仅供参考)

    先说一下这次的感受吧,我们考场比较乱,开始比赛了,还有的电脑有故障,(向这些人发出同情),第一次认真参加比赛,真正比赛的时候感觉没有那么正式,很乱,各种小问题,(例如博主就没找到题目在哪里,找到后又不 ...

  6. 第14讲:嵌入式SQL语言(基本技巧)

    一.交互式SQL的局限 & 嵌入式SQL的必要性 专业人员(如DBA)可以熟练地运用交互式SQL语言,但普通用户却不是那么容易上手,所以需要通过数据库应用程序来使用数据库.编写一个可以与数据库 ...

  7. jdbc连接获取表名称

    1,Class.forName可以替换为mysql之类其他的数据库驱动 public Connection connect(String url,String username,String pw, ...

  8. BugPhobia展示篇章:学霸在线系统Alpha阶段展示

    0x00:序言 1 universe, 9 planets, 204 countries,809 islands, 7 seas, and i had the privilege to meet yo ...

  9. t团队项目计划

    团队的backlog: .用户登录网站后,可以选择是买或者卖, (1)买 点击链接,可以分类浏览商品信息,也可以按价钱筛选 (2)卖 点击链接,选择要挂出的商品种类,填写信息(名称.价格.数量等)接着 ...

  10. 自学iOS-获取当前时间

    NSDate * senddate=[NSDate date]; NSDateFormatter *dateformatter=[[NSDateFormatter alloc] init]; [dat ...