ML—朴素贝叶斯
华电北风吹
日期:2015/12/12
朴素贝叶斯算法和高斯判别分析一样同属于生成模型。但朴素贝叶斯算法须要特征条件独立性如果,即样本各个特征之间相互独立。
一、朴素贝叶斯模型
朴素贝叶斯算法通过训练数据集学习联合概率分布p(x,y),其中x=(x1,x2,...,xn)∈Rn,y∈R。详细的对于K分类问题就是须要学习一个类别的先验概率分布p(y=ck),k=1,2,...,K和每一个类别下的条件概率分布(如式1-1)
p(x|y)=p(x1,x2,...,xn|y)(1-1)
因为朴素贝叶斯算法没有如果特征的分布,因此须要将每一个特征量化为离散型变量,然后学习各个特征水平下的条件概率。
如果各个特征xi被分别量化为Si个水平,那么共同拥有K+K∏ni=1Si个须要学习的參数。
可是,为了使朴素贝叶斯算法变得简单点—主要是降低參数个数,就强加了一个条件概率分布的独立性如果(详细如式1-2)
p(x|y)=p(x1,x2,...,xn|y)=∏ni=1P(xi|y)(1-2)
这样须要学习的參数个数就变为K+K∑ni=1Si个,大大的简化了模型。
二、朴素贝叶斯參数预计
在条件独立性如果下,贝叶斯模型的參数学习就简化为类别先验概率p(y=ck)和条件概率p(xi|y)的学习。
1、极大似然预计
对于训练数据集(x(i),y(i)),x(i)∈Rn,y(i)∈R,似然函数例如以下,
L(ϕy,ϕx|y)=∏mi=1p(x(i),y(i))=∏mi=1p(y(i))∏nj=1p(x(i)j|y(i))(2-1)
结合∑yϕy=1以及∑Sip(xi|y)=1,能够easy得到下式(简单的求偏导就可以,两式均是):
ϕy=k=∑mi=11{y(i)=k}m(2-2)
ϕxi=j|y=k=∑mi=11{y(i)=k⋂xi=j}∑mi=11{y(i)=k}(2-3)
2、古德-图灵预计
主要用于解决统计样本不足的概率预计问题,主要思想是在统计中相信可靠的统计数据,而对不可信的统计数据打折扣的一种概率预计方法。同一时候将折扣出来的那一小部分概率给予为看见的事件。
3、贝叶斯预计(拉普拉斯光滑)
在公式2-2和2-3中。会出现分子分母同为0的情况。解决这样的情况的方案例如以下:
ϕy=k=∑mi=11{y(i)=k}+λm+Kλ(2-4)
ϕxi=j|y=k=∑mi=11{y(i)=k⋂xi=j}+λ∑mi=11{y(i)=k}+Sjλ(2-5)
当中λ≥0.一般取λ=1。
三、朴素贝叶斯决策方法—最大后验概率
对于測试数据x∈Rn,朴素贝叶斯模型採用贝叶斯规则决策。详细表述例如以下:
p(y|x)=argmaxkp(y=k)p(x|y=k)
採用后验概率最大的类别作为模型输出类别。
如今细致想想感觉朴素贝叶斯跟k-means逻辑上的思路还是比較接近的。
ML—朴素贝叶斯的更多相关文章
- [置顶] 生成学习算法、高斯判别分析、朴素贝叶斯、Laplace平滑——斯坦福ML公开课笔记5
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开 ...
- [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian)
[ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先 ...
- 朴素贝叶斯算法源码分析及代码实战【python sklearn/spark ML】
一.简介 贝叶斯定理是关于随机事件A和事件B的条件概率的一个定理.通常在事件A发生的前提下事件B发生的概率,与在事件B发生的前提下事件A发生的概率是不一致的.然而,这两者之间有确定的关系,贝叶斯定理就 ...
- 贝叶斯、朴素贝叶斯及调用spark官网 mllib NavieBayes示例
贝叶斯法则 机器学习的任务:在给定训练数据A时,确定假设空间B中的最佳假设. 最佳假设:一种方法是把它定义为在给定数据A以及B中不同假设的先验概率的有关知识下的最可能假设 贝叶斯理论提供了 ...
- 【十大算法实现之naive bayes】朴素贝叶斯算法之文本分类算法的理解与实现
关于bayes的基础知识,请参考: 基于朴素贝叶斯分类器的文本聚类算法 (上) http://www.cnblogs.com/phinecos/archive/2008/10/21/1315948.h ...
- 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)
朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...
- 3.朴素贝叶斯和KNN算法的推导和python实现
前面一个博客我们用Scikit-Learn实现了中文文本分类的全过程,这篇博客,着重分析项目最核心的部分分类算法:朴素贝叶斯算法以及KNN算法的基本原理和简单python实现. 3.1 贝叶斯公式的推 ...
- 100天搞定机器学习|Day15 朴素贝叶斯
Day15,开始学习朴素贝叶斯,先了解一下贝爷,以示敬意. 托马斯·贝叶斯 (Thomas Bayes),英国神学家.数学家.数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫:1742年成为英 ...
- 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...
随机推荐
- 502 解决:[WARNING] fpm_children_bury
查过网上的资源,基本都是认为是php线程打开文件句柄受限导致的错误.具体的解决的办法如下: 1.提升服务器的文件句柄打开打开 /etc/security/limits.conf : (增加) * ...
- Javascript 继承-原型的陷阱
注:本文为翻译文章,原文为"JavaScript Inheritance – How To Shoot Yourself In the Foot With Prototypes!" ...
- URAL 1876 Centipede's Morning
1876. Centipede's Morning Time limit: 0.5 secondMemory limit: 64 MB A centipede has 40 left feet and ...
- SCC缩点
int V; //顶点数量 vector<int> G[max_v]; //图的邻接表表示方法 vector<int> rG[max_v]; //把边反向建的图 vector& ...
- Java外部类可以访问内部类private变量
在讲Singleton时我举例时用过这样一段代码: public class SingletonDemo { private static class SingletonHolder{ private ...
- BrowserRouter和HashRouter的区别
BrowserRouter: 原理是H5的history API,IE9及以下不兼容,需要由web server支持,在web client这边window.location.pathname被rea ...
- 探究Linux下参数传递及查看和修改方法
http://m.blog.csdn.net/blog/moonvs2010/11392959
- 《TCP/IP具体解释卷2:实现》笔记--ICMP:Internet控制报文协议
ICMP在IP系统间传递差错和管理报文,是不论什么IP实现必须和要求的组成部分.能够把ICMP分成两类:差错和查询.查询报文 是用一对请求和回答定义的.差错报文通常包括了引起错误的IP包的第一个分片的 ...
- SET XACT_ABORT ON 数据库事务
转载:http://www.cnblogs.com/rob0121/articles/2320932.html SET XACT_ABORT ON SET XACT_ABORT ON分为两种: 1.总 ...
- Delphi-Cross-Socket
Delphi-Cross-Socket GITHUB:https://github.com/winddriver/Delphi-Cross-Socket # Delphi 跨平台 Socket 通讯库 ...