Description

设d(x)为x的约数个数,给定N、M,求

Input

输入文件包含多组测试数据。

第一行,一个整数T,表示测试数据的组数。

接下来的T行,每行两个整数N、M。

Output

T行,每行一个整数,表示你所求的答案。

Sample Input

2

7 4

5 6

Sample Output

110

121

HINT

1<=N, M<=50000

1<=T<=50000

Solution

莫比乌斯反演

但这题更多的是套路

首先,一个神奇的东东:\(d(nm)= \sum_{i|n}\sum_{j|m}[gcd(i,j)=1]\)

这个东西是个套路,证明的话可以百度,用的确实多

然后就开始推式子

\[\sum_{i=1}^N\sum_{j=1}^Md(ij)=\sum_{i=1}^N\sum_{j=1}^M\sum_{k|i}\sum_{l|j}[gcd(k,l)=1]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^N\sum_{j=1}^M\sum_{k|i}\sum_{l|j}\sum_{d|gcd(k,l)}\mu(d)\ \ \ \ (\sum_{d|n}\mu(d)=[n=1])
\]

\[=\sum_{i=1}^N\sum_{j=1}^M\sum_{d=1}^{min(N,M)}\mu(d)\sum_{k|i}\sum_{l|j}[d|gcd(k,l)]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\sum_{i=1}^N\sum_{j=1}^M\sum_{k|i}\sum_{l|j}[d|gcd(k,l)]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\sum_{k=1}^N\sum_{l=1}^M[d|gcd(k,l)]\lfloor \frac{N}{k} \rfloor \lfloor \frac{M}{l} \rfloor\ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\sum_{dk=1}^N\sum_{dl=1}^M[d|gcd(dk,dl)]\lfloor \frac{N}{dk} \rfloor \lfloor \frac{M}{dl} \rfloor\ \ \ \
\]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\sum_{k=1}^{\lfloor \frac{N}{d} \rfloor}\sum_{l=1}^{\lfloor \frac{M}{d} \rfloor}\lfloor \frac{N}{dk} \rfloor \lfloor \frac{M}{dl} \rfloor\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^{min(N,M)}\mu(d)(\sum_{k=1}^{\lfloor \frac{N}{d} \rfloor}\lfloor \frac{N}{dk} \rfloor)(\sum_{l=1}^{\lfloor \frac{M}{d} \rfloor} \lfloor \frac{M}{dl} \rfloor)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\ f(\lfloor \frac{N}{d} \rfloor)\ f(\lfloor \frac{M}{d} \rfloor)\ \ \ \ (f(i)=\sum_{j=1}^i\lfloor \frac{i}{j} \rfloor)\ \
\]

于是\(\mu\)用线性筛加前缀和,\(f\)整除分块预处理

最后求式子再用整除分块

#include<bits/stdc++.h>
#define ll long long
const int MAXN=50000+10;
int T,cnt,prime[MAXN],mu[MAXN],s[MAXN],f[MAXN];
bool vis[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
mu[1]=1;
for(register int i=2;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
mu[i]=-1;
}
for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else break;
}
}
for(register int i=1;i<MAXN;++i)s[i]=s[i-1]+mu[i];
for(register int k=1;k<MAXN;++k)
for(register int i=1;;)
{
if(i>k)break;
int j=k/(k/i);
f[k]+=(k/i)*(j-i+1);
i=j+1;
}
}
inline ll solve(int N,int M)
{
ll res=0;
for(register int i=1;;)
{
if(i>min(N,M))break;
int j=min(N/(N/i),M/(M/i));
res+=(ll)f[N/i]*(ll)f[M/i]*(ll)(s[j]-s[i-1]);
i=j+1;
}
return res;
}
int main()
{
read(T);
init();
while(T--)
{
int N,M;
read(N);read(M);
write(solve(N,M),'\n');
}
return 0;
}

【刷题】BZOJ 3994 [SDOI2015]约数个数和的更多相关文章

  1. BZOJ 3994: [SDOI2015]约数个数和

    3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Statu ...

  2. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  3. ●BZOJ 3994 [SDOI2015]约数个数和

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3994 题解: 莫比乌斯反演 (先定义这样一个符号[x],如果x为true,则[x]=1,否则 ...

  4. bzoj 3994 [SDOI2015]约数个数和——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994 \( d(i*j)=\sum\limits_{x|i}\sum\limits_{y|j ...

  5. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

  6. BZOJ.3994.[SDOI2015]约数个数和(莫比乌斯反演)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] \(Solution\) 有结论:\[d(nm)=\sum_{i|d}\sum_{j|d ...

  7. 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)

    3994: [SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...

  8. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  9. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

随机推荐

  1. aws存储桶s3使用

    关于aws s3的使用说明: aws官方文档地址:https://docs.aws.amazon.com/s3/index.html#lang/zh_cn 创建s3与基础使用: 1.登陆aws控制台- ...

  2. 5. 使用Flask蓝图(blueprint)

    一直到现在都没有怎么写代码,可能更得比较慢. 作业回顾 先来看一下文章4的作业吧,使用logbook的时候,遇到了时区不对的情况.那么我们怎么去解决这个问题呢? 实际上logbook默认采用的是世界标 ...

  3. Flink架构分析之RPC详解

    主要抽象 Flink RPC 框架主要抽象了RpcService,RpcEndpoint,RpcGateway,RpcServer这几个接口,具体实现可以采用多种方式,比如:akka,netty Rp ...

  4. [整理]CHttpConnection的使用

    使用步骤: 1.构造一个CInternetSession的实例 CInternetSession* pSession =new CinternetSession(); //CInternetSessi ...

  5. pkill命令详解

    基础命令学习目录首页 原文链接:http://www.mamicode.com/info-detail-2315063.html 一:含义: 是ps命令和kill命令的结合,按照进程名来杀死指定进程, ...

  6. 分布式高并发下全局ID生成策略

    数据在分片时,典型的是分库分表,就有一个全局ID生成的问题.单纯的生成全局ID并不是什么难题,但是生成的ID通常要满足分片的一些要求:   1 不能有单点故障.   2 以时间为序,或者ID里包含时间 ...

  7. 【转】Java生成plist下载ipa文件

    我们在上传ipa想要安装的时候必须要通过plist文件去下载,并且还要遵循 itms-services协议. 意思就是,第一步我们要生成一个plist文件, 第二步生成一个html文件,用来指向pli ...

  8. mybatis批量插入oracle

    <insert id="batchInsert" parameterType="java.util.List"> INSERT INTO TEST( ...

  9. Daily Scrum (2015/11/4)

    因为距离部署的时间临近,而之前我们的进度偏慢.这天晚上我们大多数成员几乎所有时间都用在了这个项目上,成果还算令人满意. 成员 今日任务 时间 明日任务 符美潇 1.修复了一个BUG,此BUG会导致所爬 ...

  10. 结对编程-->总结报告

    项目github地址 PSP时间表格 结对编程中关于Information Hiding, Interface Design, Loose Coupling原则的使用 Information Hidi ...