Description

设d(x)为x的约数个数,给定N、M,求

Input

输入文件包含多组测试数据。

第一行,一个整数T,表示测试数据的组数。

接下来的T行,每行两个整数N、M。

Output

T行,每行一个整数,表示你所求的答案。

Sample Input

2

7 4

5 6

Sample Output

110

121

HINT

1<=N, M<=50000

1<=T<=50000

Solution

莫比乌斯反演

但这题更多的是套路

首先,一个神奇的东东:\(d(nm)= \sum_{i|n}\sum_{j|m}[gcd(i,j)=1]\)

这个东西是个套路,证明的话可以百度,用的确实多

然后就开始推式子

\[\sum_{i=1}^N\sum_{j=1}^Md(ij)=\sum_{i=1}^N\sum_{j=1}^M\sum_{k|i}\sum_{l|j}[gcd(k,l)=1]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^N\sum_{j=1}^M\sum_{k|i}\sum_{l|j}\sum_{d|gcd(k,l)}\mu(d)\ \ \ \ (\sum_{d|n}\mu(d)=[n=1])
\]

\[=\sum_{i=1}^N\sum_{j=1}^M\sum_{d=1}^{min(N,M)}\mu(d)\sum_{k|i}\sum_{l|j}[d|gcd(k,l)]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\sum_{i=1}^N\sum_{j=1}^M\sum_{k|i}\sum_{l|j}[d|gcd(k,l)]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\sum_{k=1}^N\sum_{l=1}^M[d|gcd(k,l)]\lfloor \frac{N}{k} \rfloor \lfloor \frac{M}{l} \rfloor\ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\sum_{dk=1}^N\sum_{dl=1}^M[d|gcd(dk,dl)]\lfloor \frac{N}{dk} \rfloor \lfloor \frac{M}{dl} \rfloor\ \ \ \
\]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\sum_{k=1}^{\lfloor \frac{N}{d} \rfloor}\sum_{l=1}^{\lfloor \frac{M}{d} \rfloor}\lfloor \frac{N}{dk} \rfloor \lfloor \frac{M}{dl} \rfloor\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^{min(N,M)}\mu(d)(\sum_{k=1}^{\lfloor \frac{N}{d} \rfloor}\lfloor \frac{N}{dk} \rfloor)(\sum_{l=1}^{\lfloor \frac{M}{d} \rfloor} \lfloor \frac{M}{dl} \rfloor)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\ f(\lfloor \frac{N}{d} \rfloor)\ f(\lfloor \frac{M}{d} \rfloor)\ \ \ \ (f(i)=\sum_{j=1}^i\lfloor \frac{i}{j} \rfloor)\ \
\]

于是\(\mu\)用线性筛加前缀和,\(f\)整除分块预处理

最后求式子再用整除分块

#include<bits/stdc++.h>
#define ll long long
const int MAXN=50000+10;
int T,cnt,prime[MAXN],mu[MAXN],s[MAXN],f[MAXN];
bool vis[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
mu[1]=1;
for(register int i=2;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
mu[i]=-1;
}
for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else break;
}
}
for(register int i=1;i<MAXN;++i)s[i]=s[i-1]+mu[i];
for(register int k=1;k<MAXN;++k)
for(register int i=1;;)
{
if(i>k)break;
int j=k/(k/i);
f[k]+=(k/i)*(j-i+1);
i=j+1;
}
}
inline ll solve(int N,int M)
{
ll res=0;
for(register int i=1;;)
{
if(i>min(N,M))break;
int j=min(N/(N/i),M/(M/i));
res+=(ll)f[N/i]*(ll)f[M/i]*(ll)(s[j]-s[i-1]);
i=j+1;
}
return res;
}
int main()
{
read(T);
init();
while(T--)
{
int N,M;
read(N);read(M);
write(solve(N,M),'\n');
}
return 0;
}

【刷题】BZOJ 3994 [SDOI2015]约数个数和的更多相关文章

  1. BZOJ 3994: [SDOI2015]约数个数和

    3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Statu ...

  2. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  3. ●BZOJ 3994 [SDOI2015]约数个数和

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3994 题解: 莫比乌斯反演 (先定义这样一个符号[x],如果x为true,则[x]=1,否则 ...

  4. bzoj 3994 [SDOI2015]约数个数和——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994 \( d(i*j)=\sum\limits_{x|i}\sum\limits_{y|j ...

  5. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

  6. BZOJ.3994.[SDOI2015]约数个数和(莫比乌斯反演)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] \(Solution\) 有结论:\[d(nm)=\sum_{i|d}\sum_{j|d ...

  7. 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)

    3994: [SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...

  8. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  9. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

随机推荐

  1. 精确的double加减乘除运算工具类

    import java.math.BigDecimal; /** * 精确的double加减乘除运算 * @author cyf * */ public class DoubleUtil { /** ...

  2. 第四篇 HTTP请求返回状态码收集及解释

    [转载]https://blog.csdn.net/wangsen2235068/article/details/8081274 当用户试图通过 HTTP 访问一台正在运行 Internet 信息服务 ...

  3. WebGL实现sprite精灵效果的GUI控件

    threejs已经有了sprite插件,这就方便了three的用户,直接可以使用threejs的sprite插件来制作GUI模型.sprite插件是阿里的lasoy老师改造过的,这个很厉害,要学习一哈 ...

  4. c语言数字图像处理(六):二维离散傅里叶变换

    基础知识 复数表示 C = R + jI 极坐标:C = |C|(cosθ + jsinθ) 欧拉公式:C = |C|ejθ 有关更多的时域与复频域的知识可以学习复变函数与积分变换,本篇文章只给出DF ...

  5. Unity编辑器扩展 Chapter7--使用ScriptableObject持久化存储数据

    Unity编辑器扩展 Chapter7--使用ScriptableObject持久化存储数据 unity unity Editor ScirptableObject  Unity编辑器扩展 Chapt ...

  6. 前端常见算法面试题之 - 从尾到头打印链表[JavaScript解法]

    题目描述 输入一个链表的头结点,从尾到头反过来打印出每个结点的值 实现思路 前端工程师看到这个题目,直接想到的就是,写个while循环来遍历链表,在循环中把节点的值存储在数组中,最后在把数组倒序后,遍 ...

  7. texlive2018和texstudio的安装及汉化教程

    latex是编写论文的利器,尤其是公式的编辑是word等不可比的,且公式可以支持转换为Matgtype,十分方便且学习周期短. 下文是texlive2018和texstudio的安装教程: 本文转自: ...

  8. 机器学习算法 --- Naive Bayes classifier

    一.引言 在开始算法介绍之前,让我们先来思考一个问题,假设今天你准备出去登山,但起床后发现今天早晨的天气是多云,那么你今天是否应该选择出去呢? 你有最近这一个月的天气情况数据如下,请做出判断. 这个月 ...

  9. Trait 是什么东西

    PHP官方手册里面写的内容是 自 PHP 5.4.0 起,PHP 实现了一种代码复用的方法,称为 trait. Trait 是为类似 PHP 的单继承语言而准备的一种代码复用机制.Trait 为了减少 ...

  10. 团队冲刺——Five

    昨天: 司宇航:web项目如何部署到公网,把网址做成桌面图标链接,登录记住密码功能. 王金萱:注册和登录界面,用户数据库的信息录入. 马佳慧:做界面. 季方:处理爬虫数据,实现统计功能. 遇到的问题: ...