loj2537 「PKUWC2018」Minimax 【概率 + 线段树合并】
题目链接
题解
观察题目的式子似乎没有什么意义,我们考虑计算出每一种权值的概率
先离散化一下权值
显然可以设一个\(dp\),设\(f[i][j]\)表示\(i\)节点权值为\(j\)的概率
如果\(i\)是叶节点显然
如果\(i\)只有一个儿子直接继承即可
如果\(i\)有两个儿子,对于儿子\(x\),设另一个儿子为\(y\)
则有
\]
直接转移是\(O(n^2)\)的,发现每个节点都有\(O(n)\)个位置需要转移
考虑优化,可以考虑线段树合并
对于一个子树中的权值\(x\),我们记另一棵子树比它大的概率为\(maxa\),
则\(x\)的概率要乘上\(maxa(1 - p_i) + (1 - maxa)p_i = maxa + p_i - 2p_imaxa\)
所以我们在线段树合并过程中,优先合并右子树,并更新两棵子树的\(maxa\)与\(maxb\),就可以在合并过程中转移了
复杂度\(O(nlogn)\)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 300005,maxm = 8000005,INF = 1000000000,P = 998244353;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,Ls[maxn],Rs[maxn],b[maxn],N,v10000;
int rt[maxn],sum[maxm],ls[maxm],rs[maxm],tag[maxm],cnt;
int p[maxn],maxa,maxb;
inline int qpow(int a,int b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
inline void pd(int u){
if (tag[u] > 1){
sum[ls[u]] = 1ll * sum[ls[u]] * tag[u] % P;
sum[rs[u]] = 1ll * sum[rs[u]] * tag[u] % P;
tag[ls[u]] = 1ll * tag[ls[u]] * tag[u] % P;
tag[rs[u]] = 1ll * tag[rs[u]] * tag[u] % P;
tag[u] = 1;
}
}
void modify(int& u,int l,int r,int pos){
u = ++cnt; sum[u] = tag[u] = 1;
if (l == r) return;
int mid = l + r >> 1;
if (mid >= pos) modify(ls[u],l,mid,pos);
else modify(rs[u],mid + 1,r,pos);
}
int merge(int u,int v,int p){
if (!u && !v) return 0;
if (!u){
maxb = (maxb + sum[v]) % P;
int tmp;
tmp = (((maxa + p) % P - 2ll * p * maxa % P) % P + P) % P;
sum[v] = 1ll * sum[v] * tmp % P;
tag[v] = 1ll * tag[v] * tmp % P;
return v;
}
if (!v){
maxa = (maxa + sum[u]) % P;
int tmp;
tmp = (((maxb + p) % P - 2ll * p * maxb % P) % P + P) % P;
sum[u] = 1ll * sum[u] * tmp % P;
tag[u] = 1ll * tag[u] * tmp % P;
return u;
}
pd(u); pd(v);
int t = ++cnt; tag[t] = 1;
rs[t] = merge(rs[u],rs[v],p);
ls[t] = merge(ls[u],ls[v],p);
sum[t] = (sum[ls[t]] + sum[rs[t]]) % P;
return t;
}
void dfs(int u){
if (!Ls[u]) modify(rt[u],1,N,p[u]);
else if (!Rs[u]) dfs(Ls[u]),rt[u] = rt[Ls[u]];
else {
dfs(Ls[u]); dfs(Rs[u]);
maxa = maxb = 0;
rt[u] = merge(rt[Ls[u]],rt[Rs[u]],p[u]);
}
}
int ans;
void cal(int u,int l,int r){
if (l == r) {ans = (ans + 1ll * l * b[l] % P * sum[u] % P * sum[u] % P) % P;return;}
pd(u);
int mid = l + r >> 1;
cal(ls[u],l,mid);
cal(rs[u],mid + 1,r);
}
int main(){
n = read(); read(); int x; v10000 = qpow(10000,P - 2);
for (int i = 2; i <= n; i++){
x = read();
if (!Ls[x]) Ls[x] = i;
else Rs[x] = i;
}
for (int i = 1; i <= n; i++){
p[i] = read();
if (!Ls[i]) b[++N] = p[i];
else p[i] = 1ll * p[i] * v10000 % P;
}
sort(b + 1,b + 1 + N);
for (int i = 1; i <= n; i++)
if (!Ls[i]) p[i] = lower_bound(b + 1,b + 1 + N,p[i]) - b;
dfs(1);
cal(rt[1],1,N);
printf("%d\n",ans);
return 0;
}
loj2537 「PKUWC2018」Minimax 【概率 + 线段树合并】的更多相关文章
- LOJ2537. 「PKUWC2018」Minimax【概率DP+线段树合并】
LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小 ...
- LOJ2537. 「PKUWC2018」Minimax [DP,线段树合并]
传送门 思路 首先有一个\(O(n^2)\)的简单DP:设\(dp_{x,w}\)为\(x\)的权值为\(w\)的概率. 假设\(w\)来自\(v1\)的子树,那么有 \[ dp_{x,w}=dp_{ ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
- loj#2537. 「PKUWC2018」Minimax
题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum ...
- 「CQOI2006」简单题 线段树
「CQOI2006」简单题 线段树 水.区间修改,单点查询.用线段树维护区间\([L,R]\)内的所有\(1\)的个数,懒标记表示为当前区间是否需要反转(相对于区间当前状态),下方标记时懒标记取反即可 ...
- BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)
BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...
- 【LOJ】#2537. 「PKUWC2018」Minimax
题解 加法没写取模然后gg了QwQ,de了半天 思想还是比较自然的,线段树合并的维护方法我是真的很少写,然后没想到 很显然,我们有个很愉快的想法是,对于每个节点枚举它所有的叶子节点,对于一个叶子节点的 ...
- 「PKUWC2018」Minimax
题面 题解 强势安利一波巨佬的$blog$ 线段树合并吼题啊 合并的时候要记一下$A$点权值小于$l$的概率和$A$点权值大于$r$的概率,对$B$点同样做 时空复杂度$\text O(nlogw)$ ...
- [PKUWC2018]Minimax [dp,线段树合并]
好妙的一个题- 我们设 \(f_{i,j}\) 为 \(i\) 节点出现 \(j\) 的概率 设 \(l = ch[i][0] , r = ch[i][1]\) 即左儿子右儿子 设 \(m\) 为叶子 ...
随机推荐
- 32bit 天堂2服务端多机负载
第一步..先确定..单机架设成功.. 第二步..复制整个服务器端文件到第2个服务器 第3步.. 将你C:\Program Files\Common Files\ODBC\Data Sources 中的 ...
- centos7以上安装python3,一条命令搞定。
直接复制下面的命令就搞定 yum install python34 python34-pip python34-setuptools 使用方法: python3 ---.py pip3 install ...
- jobs命令详解
基础命令学习目录首页 在用管理员执行一个命令后,用Ctrl+Z把命令转移到了后台.导致无法退出root的. 输入命令:exit终端显示:There are stopped jobs. 解决方法:方法一 ...
- dubbo支持协议及具体对比
对dubbo的协议的学习,可以知道目前主流RPC通信大概是什么情况,本文参考dubbo官方文档 http://dubbo.io/User+Guide-zh.htm dubbo共支持如下几种通信协议: ...
- Navicat将oracle中数据复制到mysql
1,首先两个数据库都要处于连接状态 2,工具 -- 数据传输 3,选择来源数据库以及要传输的表和目标数据库 4,点击开始 PS:遇到一个问题:[Err] [Dtf] 1426 - Too-big pr ...
- 团队冲刺——Five
昨天: 司宇航:web项目如何部署到公网,把网址做成桌面图标链接,登录记住密码功能. 王金萱:注册和登录界面,用户数据库的信息录入. 马佳慧:做界面. 季方:处理爬虫数据,实现统计功能. 遇到的问题: ...
- web02-welcomeyou
新建web项目web02-welcomeyou, 修改index.jsp为 <body> This is my JSP page. <br> <form action=& ...
- 《Spring1之第七次站立会议》
<第七次站立会议> 昨天:我把自己项目工程里的服务器端界面进行了优化和完善. 今天:我查找了关于实现视频功能的相关代码. 遇到的问题:找到的都是基于C#的相关代码,很难找到用java实现的 ...
- struts2 jsp提交对象数据要这么干
不要每个属性都 setter getter .. 这样页面很难看... 直接 把对象变成一个成员变量会比较好. Java code ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
- Hibernate连接数据库一直报NullPointerException
原来是少了这个.. //private HibernateTemplate hibernateTemplate; //少了下面 public HibernateTemplate getHibernat ...