1000! mod 10^250 
===============
the answer is 2
================
Hi I'm trying to solve the above problem that was asked recently. Couldn't mod it because it was closed. 

So far I've found the 1000! has 249 zeros 
because there are 
200 multiples of 5 that will generate 200 zeros 
40 multiples of 25 that will generate an Additional 40 zeros 
8 multiples of 125 that will generate an Additional 8 zeros 
1 multiple of 625 that will generate an addition zero. 

So what I'm trying to find is what the last significant digit is. 
Now. 
1x2x3x4x1x6x7x8x9 
generates a value that ends in 6 
The same will apply to every other sequence ending in 
1,2,3,4,6,7,8,9 
of which there are 100 
6^100 conveniently also ends in 6 as does any power of 6. 

Multiplying of 10, 20,30,40, 60,70,80,90 will does the same thing for every set of 100 
as will 
the multiplying of 100, 200,300,400, 600,700,800,900 will does the same thing as well. 

However, I can't figure out how to deal with the multiples of 5 now that are not multiples of 10 and the multipliers that are multiples of 50 that aren't 100s 
and the 500. 

Any suggestions ?
Update: Actually, I just realised that I can bind every 5 to a 2; every 50 to a 20, and the 500 to a 200 
Leaving me with 111 sets of (1.3.4.6.7.8.9) 
which ends in an 8 
so 8^111 ends in a 2; because powers of 8 mod 10 repeat in sets of 4. 

So I'm guessing that the final answer is 2 
Anybody know if this would be correct ? 
Thanks.
Update 2: Thanks for the "can't bind the 5s" Forgot that that's kind of why they were left out to begin with. 
The 111 was from 
100 sequences of 1,2,3,...,9; 10 sequences of 10,20,30...,90; 1 sequence of 100,200,300... 
thanks for the Wolfram link - that's awesome.
Update 3: Primes seem to have been the way to go. 
1000! can be written as 
2^994.3^498.5^249.7^164.11^98.13^81.17^... etc 
which can written 
2^249.5^249.2^745.3^498. etc 

1000! can then also be thought of as Product(all non multiples of 5).5^160.Product(allnon multiples of 5 to 200).(5^2)^(40-8).Product(all non multiples of 5 to 40).(5^3)^(8-1)(Pupto8).(5^4)^1(1) 
which is 5^249.(product sequences with all least significant digits 1,2,3,4,6,7,8,9).product_sequence(1.2.3.... 
which is 5^249(sequence ending in 6)(sequence ending in 4) 
which is 5^249(sequence ending in 4) 

I already know that the (sequence ending in 4) has 2^249.2^745 as a factor. 
Taking out 2^249 from that (sequence ending in 4) will remove the issue with the 5s 
multiples of 2 end in the sequence 2,4,8,6, 2,4,8,6 etc. 
stepping back 249 times along this sequence starting at 4, we arrive at 2 
So I think that is a reasonable method and answer ? 
Thanks for all the help.

========================================================================================
 Best Answer:  Yes, it ends in 249 0's and the last significant digits are 10970027753472. I have a program that does the calculation. Results are in the image below, or athttp://i276.photobucket.com/albums/kk2/f... if YahooAnswers maintenance is preventing you from seeing it. 

I'm not quite sure of the details of what you did. You can't ignore the multiples of 5 just because they get matched up with a 2. E.g., take 30 and 40. Match up the 5's and you are left with factors of 6 and 8, which are different, and you have to account for those quotients after the 5's are out. You are looking at sets of 1x3x4x6x7x8x9 but when you take the 2 out to bind to a 5, what's left? 32x35 = 1120. 42*45 = 1890. So in one case you still have a 2 to deal with, in the other it's a 9. 

1*2*3*4*6*7*8*9*(5*10) = 72,576 x 50 = something ending in 6 x 50 = 3628800. Last s.d. is an 8. 
The product from 11 to 20 = something ending in 6 x (15x20) = something ending in 6 x 300. Last s.d. is again an 8 
But the product from, say, 31 to 40 = something ending in 6 x (35*40) = 6 x 1400 and it ends in a 4, not an 8. 

So you've matched up all the 5's, but you need to be concerned about what's left when you do that. I'm not quite sure if you've done that. 2 is the right answer, but I'm not sure that it's because 8^111 ends in 2. Maybe it is, but I don't see where you got 111. Is that from factoring out the 5's somehow? 

I think you have either figured out the right answer, or are on the right track. It looks like you may have a little more work to do to solve this analytically. 

Here's some add'l info, a table of the last 3 s.d.'s of n! 

100 864 
200 472 
300 496 
400 008 
500 864 
600 496 
700 384 
800 496 
900 432 
1000 472 

You can see how irregular it is. It's easy to count the factors of 5, but not so easy to determine that last digit of what you are left with after you factor them out. 

Another approach is to count all the prime factors of 1000!, toss out the 5's and 249 of the 2's, find p^e mod 1000, and then take the cumulative product mod 1000. Once again you get 472 as the last 3 s.d.'s. You get: 

P e p^e mod 1000 *** prod mod 1000 
2 745 832 832 
3 498 889 648 
5 0 1 648 
7 164 401 848 
11 98 281 288 
13 81 613 544 
17 61 617 648 
19 54 321 8 
23 44 241 928 
29 35 549 472 
31 33 191 152 
37 27 533 16 
41 24 561 976 
43 23 507 832 
47 21 847 704 
53 18 689 56 
59 16 41 296 
61 16 961 456 
67 14 329 24 
71 14 881 144 
73 13 33 752 
79 12 441 632 
83 12 161 752 
89 11 489 728 
97 10 49 672 
101 9 901 472 
103 9 583 176 
107 9 507 232 
109 9 389 248 
113 8 321 608 
127 7 503 824 
131 7 811 264 
137 7 433 312 
139 7 379 248 
149 6 601 48 
151 6 401 248 
157 6 449 352 
163 6 9 168 
167 5 607 976 
173 5 93 768 
179 5 899 432 
181 5 901 232 
191 5 951 632 
193 5 193 976 
197 5 757 832 
199 5 999 168 
211 4 441 88 
223 4 441 808 
227 4 841 528 
229 4 481 968 
233 4 521 328 
239 4 641 248 
241 4 561 128 
251 3 251 128 
257 3 593 904 
263 3 447 88 
269 3 109 592 
271 3 511 512 
277 3 933 696 
281 3 41 536 
283 3 187 232 
293 3 757 624 
307 3 443 432 
311 3 231 792 
313 3 297 224 
317 3 13 912 
331 3 691 192 
337 2 569 248 
347 2 409 432 
349 2 801 32 
353 2 609 488 
359 2 881 928 
367 2 689 392 
373 2 129 568 
379 2 641 88 
383 2 689 632 
389 2 321 872 
397 2 609 48 
401 2 801 448 
409 2 281 888 
419 2 561 168 
421 2 241 488 
431 2 761 368 
433 2 489 952 
439 2 721 392 
443 2 249 608 
449 2 601 408 
457 2 849 392 
461 2 521 232 
463 2 369 608 
467 2 89 112 
479 2 441 392 
487 2 169 248 
491 2 81 88 
499 2 1 88 
503 1 503 264 
509 1 509 376 
521 1 521 896 
523 1 523 608 
541 1 541 928 
547 1 547 616 
557 1 557 112 
563 1 563 56 
569 1 569 864 
571 1 571 344 
577 1 577 488 
587 1 587 456 
593 1 593 408 
599 1 599 392 
601 1 601 592 
607 1 607 344 
613 1 613 872 
617 1 617 24 
619 1 619 856 
631 1 631 136 
641 1 641 176 
643 1 643 168 
647 1 647 696 
653 1 653 488 
659 1 659 592 
661 1 661 312 
673 1 673 976 
677 1 677 752 
683 1 683 616 
691 1 691 656 
701 1 701 856 
709 1 709 904 
719 1 719 976 
727 1 727 552 
733 1 733 616 
739 1 739 224 
743 1 743 432 
751 1 751 432 
757 1 757 24 
761 1 761 264 
769 1 769 16 
773 1 773 368 
787 1 787 616 
797 1 797 952 
809 1 809 168 
811 1 811 248 
821 1 821 608 
823 1 823 384 
827 1 827 568 
829 1 829 872 
839 1 839 608 
853 1 853 624 
857 1 857 768 
859 1 859 712 
863 1 863 456 
877 1 877 912 
881 1 881 472 
883 1 883 776 
887 1 887 312 
907 1 907 984 
911 1 911 424 
919 1 919 656 
929 1 929 424 
937 1 937 288 
941 1 941 8 
947 1 947 576 
953 1 953 928 
967 1 967 376 
971 1 971 96 
977 1 977 792 
983 1 983 536 
991 1 991 176 
997 1 997 472


Source(s):http://www.wolframalpha.com/input/?i=100... gives you the answer too. Keep asking for "more digits."

1000! mod 10^250的更多相关文章

  1. MOD 10,11算法(GB/T 17710-1999 数据处理 校验码系统 ),使用javascript实现

    原文链接:http://chunniu.info/p/74.html GB/T 17710-1999 数据处理 校验码系统 ,便于使用,使用javascript做了一个页面 [php] var NUM ...

  2. MOD 10,11算法(GB/T 17710-1999 数据处理 校验码系统 )的 Python实现

    以上是算法简要说明,以下代码为Python实现,不过注意代码中的N=15,不是16. # GB/T 17710 双模校验算法 # QQ 3257132998 def GB_Code(str): str ...

  3. 复习指南(Pascal版)

    [第一层级 条件反射] 1.个十百千各数位的求法 q:=a div 1000 mod 10; b:=a div 100 mod 10; s:=a div 10 mod 10; g:=a mod 10; ...

  4. 51Nod 1087 1 10 100 1000 | 数学

    Input示例 3 1 2 3 Output示例 1 1 0 #include "bits/stdc++.h" using namespace std; #define LL lo ...

  5. 1007 正整数分组 1010 只包含因子2 3 5的数 1014 X^2 Mod P 1024 矩阵中不重复的元素 1031 骨牌覆盖

    1007 正整数分组 将一堆正整数分为2组,要求2组的和相差最小. 例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的.   Input 第1行:一个 ...

  6. 【转】cocos2d-x获取系统时间——2013-08-25 10

    欢迎转载,本帖地址:http://blog.csdn.net/jinjian2009/article/details/9449585 之前使用过cocos2d-x获取系统时间,毫秒级的 long ge ...

  7. Mod in math

    An Introduction to Modular Math When we divide two integers we will have an equation that looks like ...

  8. ProxySQL 排错 Max connect timeout reached while reaching hostgroup 10 after 10000ms

    ProxySQL 排错 问题分析: 在ProxySQL在集群下,因未知原因导致误测到所有节点OFFLINE_HARD,并runtime_mysql_servers表清空,从而导致前端查询无法传递到后端 ...

  9. mongoDB 高级查询之取模查询$mod

    http://hancang2000.i.sohu.com/blog/view/235140698.htm $mod取模运算   查询age取模10等于0的数据 db.student.find( { ...

随机推荐

  1. OO第一单元作业

    第一次作业 类图:   复杂度: 圈复杂度的问题一直困扰着这三次作业,主要体现在求导方法中先判断符号导致出现过多判断语句,应该将整理符号放在一个新的类中处理. 第一次作业由于对面向对象的思维有些不理解 ...

  2. [经验]微信开放平台,一个APP secret可以绑定一个APP,然后再绑定一个ipad 版本APP

    微信开放平台,一个APP secret可以绑定一个APP,然后再绑定一个ipad 版本APP

  3. 简单shell expect程序

    1 expect程序 用的Ubuntu,本身没带expect,安装. sudo apt-get install expect (关于expect,参见http://www.tclchina.com/a ...

  4. Redis查询&JDBC查询&Hibernate查询方式的效率比较...

    比较三种查询方式查询效率对比...我是用的JavaWeb的方式通过通过JSP页面查询的填写查询的参数...给予反馈.... 整个demo的下载地址:http://files.cnblogs.com/f ...

  5. 目录打散-hash算法

    前几篇说了文件上传,都是上传到了WebRoot下的up目录,这样是不行的,文件多了性能就不行了.文件一般都是分目录存放的,这里讲建目录的一种算法.先看结果,经过本算法建的目录,结构是这样的,还以up目 ...

  6. 恶性bug解决,Encoding 1252 data could not be found. Make sure you have correct international codeset assembly installed and enabled

    百度是没有的,google了下 这句话的意思是编码1252没找到,确保程序及是国际化格式 发生在我使用unity读取xlsx文件,在编辑器运行正常,但是发布出来不正常,报错 解决方案: 链接:http ...

  7. 1-hadoop中遇到的各种异常

    本贴记录学习hadoop中遇到的各种异常, 包括推荐系统分类下的和本分类下的, 持续更新 1, 搭建ha时, active和standy之间不能自由切换 经检查, 配置文件错误, 私钥配置 root ...

  8. ruby大神与菜鸟的代码区别

    之前Brand类   has_and_belongs_to_many :categories, index: true 现在在Category类 增加 has_and_belongs_to_many ...

  9. 远程桌面控制项目开发(Spring+Netty+Swing)

    [目录] 1.前言 2.初现端倪 3.款款深入 4.责任细分 5.功能层级图 6.项目结构 7.关键类设计 8.一些设计想法 9.待优化 10.一点心得 11.效果演示 12.讨论 13.GitHub ...

  10. C#.NET下转换泛型列表为JSON格式

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Te ...