1000! mod 10^250
So far I've found the 1000! has 249 zeros
because there are
200 multiples of 5 that will generate 200 zeros
40 multiples of 25 that will generate an Additional 40 zeros
8 multiples of 125 that will generate an Additional 8 zeros
1 multiple of 625 that will generate an addition zero.
So what I'm trying to find is what the last significant digit is.
Now.
1x2x3x4x1x6x7x8x9
generates a value that ends in 6
The same will apply to every other sequence ending in
1,2,3,4,6,7,8,9
of which there are 100
6^100 conveniently also ends in 6 as does any power of 6.
Multiplying of 10, 20,30,40, 60,70,80,90 will does the same thing for every set of 100
as will
the multiplying of 100, 200,300,400, 600,700,800,900 will does the same thing as well.
However, I can't figure out how to deal with the multiples of 5 now that are not multiples of 10 and the multipliers that are multiples of 50 that aren't 100s
and the 500.
Any suggestions ?
Leaving me with 111 sets of (1.3.4.6.7.8.9)
which ends in an 8
so 8^111 ends in a 2; because powers of 8 mod 10 repeat in sets of 4.
So I'm guessing that the final answer is 2
Anybody know if this would be correct ?
Thanks.
The 111 was from
100 sequences of 1,2,3,...,9; 10 sequences of 10,20,30...,90; 1 sequence of 100,200,300...
thanks for the Wolfram link - that's awesome.
1000! can be written as
2^994.3^498.5^249.7^164.11^98.13^81.17^... etc
which can written
2^249.5^249.2^745.3^498. etc
1000! can then also be thought of as Product(all non multiples of 5).5^160.Product(allnon multiples of 5 to 200).(5^2)^(40-8).Product(all non multiples of 5 to 40).(5^3)^(8-1)(Pupto8).(5^4)^1(1)
which is 5^249.(product sequences with all least significant digits 1,2,3,4,6,7,8,9).product_sequence(1.2.3....
which is 5^249(sequence ending in 6)(sequence ending in 4)
which is 5^249(sequence ending in 4)
I already know that the (sequence ending in 4) has 2^249.2^745 as a factor.
Taking out 2^249 from that (sequence ending in 4) will remove the issue with the 5s
multiples of 2 end in the sequence 2,4,8,6, 2,4,8,6 etc.
stepping back 249 times along this sequence starting at 4, we arrive at 2
So I think that is a reasonable method and answer ?
Thanks for all the help.

I'm not quite sure of the details of what you did. You can't ignore the multiples of 5 just because they get matched up with a 2. E.g., take 30 and 40. Match up the 5's and you are left with factors of 6 and 8, which are different, and you have to account for those quotients after the 5's are out. You are looking at sets of 1x3x4x6x7x8x9 but when you take the 2 out to bind to a 5, what's left? 32x35 = 1120. 42*45 = 1890. So in one case you still have a 2 to deal with, in the other it's a 9. 
1*2*3*4*6*7*8*9*(5*10) = 72,576 x 50 = something ending in 6 x 50 = 3628800. Last s.d. is an 8. 
The product from 11 to 20 = something ending in 6 x (15x20) = something ending in 6 x 300. Last s.d. is again an 8 
But the product from, say, 31 to 40 = something ending in 6 x (35*40) = 6 x 1400 and it ends in a 4, not an 8. 
So you've matched up all the 5's, but you need to be concerned about what's left when you do that. I'm not quite sure if you've done that. 2 is the right answer, but I'm not sure that it's because 8^111 ends in 2. Maybe it is, but I don't see where you got 111. Is that from factoring out the 5's somehow? 
I think you have either figured out the right answer, or are on the right track. It looks like you may have a little more work to do to solve this analytically. 
Here's some add'l info, a table of the last 3 s.d.'s of n! 
100	864 
200	472 
300	496 
400	008 
500	864 
600	496 
700	384 
800	496 
900	432 
1000	472 
You can see how irregular it is. It's easy to count the factors of 5, but not so easy to determine that last digit of what you are left with after you factor them out. 
Another approach is to count all the prime factors of 1000!, toss out the 5's and 249 of the 2's, find p^e mod 1000, and then take the cumulative product mod 1000. Once again you get 472 as the last 3 s.d.'s. You get: 
P	e	p^e mod 1000	*** prod mod 1000 
2	745	832	832 
3	498	889	648 
5	0	1	648 
7	164	401	848 
11	98	281	288 
13	81	613	544 
17	61	617	648 
19	54	321	8 
23	44	241	928 
29	35	549	472 
31	33	191	152 
37	27	533	16 
41	24	561	976 
43	23	507	832 
47	21	847	704 
53	18	689	56 
59	16	41	296 
61	16	961	456 
67	14	329	24 
71	14	881	144 
73	13	33	752 
79	12	441	632 
83	12	161	752 
89	11	489	728 
97	10	49	672 
101	9	901	472 
103	9	583	176 
107	9	507	232 
109	9	389	248 
113	8	321	608 
127	7	503	824 
131	7	811	264 
137	7	433	312 
139	7	379	248 
149	6	601	48 
151	6	401	248 
157	6	449	352 
163	6	9	168 
167	5	607	976 
173	5	93	768 
179	5	899	432 
181	5	901	232 
191	5	951	632 
193	5	193	976 
197	5	757	832 
199	5	999	168 
211	4	441	88 
223	4	441	808 
227	4	841	528 
229	4	481	968 
233	4	521	328 
239	4	641	248 
241	4	561	128 
251	3	251	128 
257	3	593	904 
263	3	447	88 
269	3	109	592 
271	3	511	512 
277	3	933	696 
281	3	41	536 
283	3	187	232 
293	3	757	624 
307	3	443	432 
311	3	231	792 
313	3	297	224 
317	3	13	912 
331	3	691	192 
337	2	569	248 
347	2	409	432 
349	2	801	32 
353	2	609	488 
359	2	881	928 
367	2	689	392 
373	2	129	568 
379	2	641	88 
383	2	689	632 
389	2	321	872 
397	2	609	48 
401	2	801	448 
409	2	281	888 
419	2	561	168 
421	2	241	488 
431	2	761	368 
433	2	489	952 
439	2	721	392 
443	2	249	608 
449	2	601	408 
457	2	849	392 
461	2	521	232 
463	2	369	608 
467	2	89	112 
479	2	441	392 
487	2	169	248 
491	2	81	88 
499	2	1	88 
503	1	503	264 
509	1	509	376 
521	1	521	896 
523	1	523	608 
541	1	541	928 
547	1	547	616 
557	1	557	112 
563	1	563	56 
569	1	569	864 
571	1	571	344 
577	1	577	488 
587	1	587	456 
593	1	593	408 
599	1	599	392 
601	1	601	592 
607	1	607	344 
613	1	613	872 
617	1	617	24 
619	1	619	856 
631	1	631	136 
641	1	641	176 
643	1	643	168 
647	1	647	696 
653	1	653	488 
659	1	659	592 
661	1	661	312 
673	1	673	976 
677	1	677	752 
683	1	683	616 
691	1	691	656 
701	1	701	856 
709	1	709	904 
719	1	719	976 
727	1	727	552 
733	1	733	616 
739	1	739	224 
743	1	743	432 
751	1	751	432 
757	1	757	24 
761	1	761	264 
769	1	769	16 
773	1	773	368 
787	1	787	616 
797	1	797	952 
809	1	809	168 
811	1	811	248 
821	1	821	608 
823	1	823	384 
827	1	827	568 
829	1	829	872 
839	1	839	608 
853	1	853	624 
857	1	857	768 
859	1	859	712 
863	1	863	456 
877	1	877	912 
881	1	881	472 
883	1	883	776 
887	1	887	312 
907	1	907	984 
911	1	911	424 
919	1	919	656 
929	1	929	424 
937	1	937	288 
941	1	941	8 
947	1	947	576 
953	1	953	928 
967	1	967	376 
971	1	971	96 
977	1	977	792 
983	1	983	536 
991	1	991	176 
997	1	997	472
1000! mod 10^250的更多相关文章
- MOD 10,11算法(GB/T 17710-1999 数据处理 校验码系统 ),使用javascript实现
		
原文链接:http://chunniu.info/p/74.html GB/T 17710-1999 数据处理 校验码系统 ,便于使用,使用javascript做了一个页面 [php] var NUM ...
 - MOD 10,11算法(GB/T 17710-1999 数据处理 校验码系统 )的 Python实现
		
以上是算法简要说明,以下代码为Python实现,不过注意代码中的N=15,不是16. # GB/T 17710 双模校验算法 # QQ 3257132998 def GB_Code(str): str ...
 - 复习指南(Pascal版)
		
[第一层级 条件反射] 1.个十百千各数位的求法 q:=a div 1000 mod 10; b:=a div 100 mod 10; s:=a div 10 mod 10; g:=a mod 10; ...
 - 51Nod 1087 1 10 100 1000 | 数学
		
Input示例 3 1 2 3 Output示例 1 1 0 #include "bits/stdc++.h" using namespace std; #define LL lo ...
 - 1007 正整数分组    1010 只包含因子2 3 5的数    1014 X^2 Mod P    1024 矩阵中不重复的元素    1031 骨牌覆盖
		
1007 正整数分组 将一堆正整数分为2组,要求2组的和相差最小. 例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. Input 第1行:一个 ...
 - 【转】cocos2d-x获取系统时间——2013-08-25 10
		
欢迎转载,本帖地址:http://blog.csdn.net/jinjian2009/article/details/9449585 之前使用过cocos2d-x获取系统时间,毫秒级的 long ge ...
 - Mod in math
		
An Introduction to Modular Math When we divide two integers we will have an equation that looks like ...
 - ProxySQL 排错 Max connect timeout reached while reaching hostgroup 10 after 10000ms
		
ProxySQL 排错 问题分析: 在ProxySQL在集群下,因未知原因导致误测到所有节点OFFLINE_HARD,并runtime_mysql_servers表清空,从而导致前端查询无法传递到后端 ...
 - mongoDB 高级查询之取模查询$mod
		
http://hancang2000.i.sohu.com/blog/view/235140698.htm $mod取模运算 查询age取模10等于0的数据 db.student.find( { ...
 
随机推荐
- git命令上传项目到码云总结
			
码云上传项目git命令总结: git clone https://git.oschina.net/xh-lxx/xh-lxx.oschina.io.git 进入到克隆下来的文件夹,然后操作git命令 ...
 - 快速排序的理解和实现(Java)
			
快速排序介绍 快速排序(Quick Sort)使用分治法策略,其基本思想是:通过一趟排序将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另外一部分记录的关键字小,则可分别对这两部分记录继续进 ...
 - Vue-Router路由Vue-CLI脚手架和模块化开发      之 使用props替代路由对象的方式获取参数
			
在上一章博文中使用路由对象$route获取参数时,组件和路由对象耦合,在这篇博文中就可以使用props来进行解耦: 1.在组件中使用props选项定义数据,接收参数: 2.在路由中,使用props选项 ...
 - hive多表联合查询(GroupLens->Users,Movies,Ratings表)
			
hive (UserMovieRating)> create table if not exists Users( > UserID int co ...
 - (转)Db2数据库一次生产故障详细记录---数据库坏页
			
原文:http://www.talkwithtrend.com/Article/216335 前言 数据库最严重的故障莫过于数据库损坏.数据库坏页是数据库损坏的一种,如果数据库中有数据页出现损坏,在没 ...
 - Opserver 初探三《服务器数据监控》
			
用Opserver 怎么像zabbix一样监控服务器呢,查看github官方说明,Opserver可用于连接任何支持Bosun, Orion, or direct WMI监控数据. Opserver ...
 - h5 端图片上传
			
1.upload.js (function($) { $.extend($.fn, { images : new Array(), initImages:function (images) { $.e ...
 - WordPress 主题教程
			
创建 WordPress 主题其实不难,只要你从现在开始认真学习这个教程,从零一步一步开始,你就会成为一个 WordPress 主题制作高手,至少你会修改现有主题. 下面是一个从零开始制作 WordP ...
 - win7使用命令
			
osk 屏幕键盘 perfmon 性能监视器 PresentationSettings 演示设置 recdisc.exe 创建系统恢复光盘 regedt32 注册表编辑器 rekeywiz 加密文件系 ...
 - golang-利用反射给结构体赋值
			
由于想给一个结构体的部分成员赋值,但是有不知道具体名字,故将tag的json名字作为索引,按照json名字来一一赋值 1.通过tag反射//将结构体里的成员按照json名字来赋值 func SetSt ...